Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Xenotransplantation ; 31(3): e12861, 2024.
Article in English | MEDLINE | ID: mdl-38818852

ABSTRACT

BACKGROUND: Preoperative size matching is essential for both allogeneic and xenogeneic heart transplantation. In preclinical pig-to-baboon xenotransplantation experiments, porcine donor organs are usually matched to recipients by using indirect parameters, such as age and total body weight. For clinical use of xenotransplantation, a more precise method of size measurement would be desirable to guarantee a "perfect match." Here, we investigated the use of transthoracic echocardiography (TTE) and described a new method to estimate organ size prior to xenotransplantation. METHODS: Hearts from n = 17 genetically modified piglets were analyzed by TTE and total heart weight (THW) was measured prior to xenotransplantation into baboons between March 2018 and April 2022. Left ventricular (LV) mass was calculated according to the previously published method by Devereux et al. and a newly adapted formula. Hearts from n = 5 sibling piglets served as controls for the determination of relative LV and right ventricular (RV) mass. After explantation, THW and LV and RV mass were measured. RESULTS: THW correlated significantly with donor age and total body weight. The strongest correlation was found between THW and LV mass calculated by TTE. Compared to necropsy data of the control piglets, the Devereux formula underestimated both absolute and relative LV mass, whereas the adapted formula yielded better results. Combining the adapted formula and the relative LV mass data, THW can be predicted with TTE. CONCLUSIONS: We demonstrate reliable LV mass estimation by TTE for size matching prior to xenotransplantation. An adapted formula provides more accurate results of LV mass estimation than the generally used Devereux formula in the xenotransplantation setting. TTE measurement of LV mass is superior for the prediction of porcine heart sizes compared to conventional parameters such as age and total body weight.


Subject(s)
Echocardiography , Heart Transplantation , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Heart Transplantation/methods , Echocardiography/methods , Swine , Organ Size , Papio , Heterografts , Animals, Genetically Modified , Heart/anatomy & histology
2.
Exp Parasitol ; 261: 108750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614222

ABSTRACT

Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.


Subject(s)
Entamoeba , Enteropathogenic Escherichia coli , Virulence Factors , Enteropathogenic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/genetics , Entamoeba/pathogenicity , Entamoeba/genetics , Entamoeba/physiology , Virulence Factors/genetics , Virulence , Animals , Mice , Liver Abscess, Amebic/parasitology , Entamoebiasis/parasitology , Humans , Gene Expression
3.
Xenotransplantation ; 30(5): e12820, 2023.
Article in English | MEDLINE | ID: mdl-37735958

ABSTRACT

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Subject(s)
Endothelial Cells , Glycocalyx , Animals , Humans , Swine , Transplantation, Heterologous , Animals, Genetically Modified , Complement System Proteins
4.
Int Microbiol ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37759067

ABSTRACT

The present study compared bacterial and fungal diversity of kefir beverages produced using milk (MK) or sugared water (WK) as propagation matrices and grains from the cities of Curitiba (CU) or Salvador (SA), Brazil, by sequencing the complete set of RNA transcripts produced in four products. In Brazil, milk and sugared water are used as matrices to propagate kefir grains. In all beverages, the bacterial community was composed of Lactobacillaceae and Acetobacteraceae. Saccharomycetaceae was the yeast family more abundant in WK, and Dipodascaceae and Pichiaceae in MK. Regarding KEGG mapping of functional orthologs, the four kefir samples shared 70% of KO entries of yeast genes but only 36% of bacterial genes. Concerning main metabolic processes, the relative abundance of transcripts associated with metabolism (energy metabolism) and environmental information processing (membrane transport) had the highest water/milk kefir ratio observed in Firmicutes. In contrast, transcripts associated with genetic information processing (protein translation, folding, sorting, and degradation) oppositely had the lowest water/milk ratios. Concluding, milk and water kefir have quite different communities of microorganisms. Still, the main mapped functional processes are similar, with only quantitative variation in membrane transport and energy acquisition in the water kefir and protein synthesis and turnover in the milk kefir.

5.
Transplantation ; 107(12): e328-e338, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37643028

ABSTRACT

BACKGROUND: Orthotopic cardiac xenotransplantation has seen substantial advancement in the last years and the initiation of a clinical pilot study is close. However, donor organ overgrowth has been a major hurdle for preclinical experiments, resulting in loss of function and the decease of the recipient. A better understanding of the pathogenesis of organ overgrowth after xenotransplantation is necessary before clinical application. METHODS: Hearts from genetically modified ( GGTA1-KO , hCD46/hTBM transgenic) juvenile pigs were orthotopically transplanted into male baboons. Group I (control, n = 3) received immunosuppression based on costimulation blockade, group II (growth inhibition, n = 9) was additionally treated with mechanistic target of rapamycin inhibitor, antihypertensive medication, and fast corticoid tapering. Thyroid hormones and insulin-like growth factor 1 were measured before transplantation and before euthanasia, left ventricular (LV) growth was assessed by echocardiography, and hemodynamic data were recorded via a wireless implant. RESULTS: Insulin-like growth factor 1 was higher in baboons than in donor piglets but dropped to porcine levels at the end of the experiments in group I. LV mass increase was 10-fold faster in group I than in group II. This increase was caused by nonphysiological LV wall enlargement. Additionally, pressure gradients between LV and the ascending aorta developed, and signs of dynamic left ventricular outflow tract (LVOT) obstruction appeared. CONCLUSIONS: After orthotopic xenotransplantation in baboon recipients, untreated porcine hearts showed rapidly progressing concentric hypertrophy with dynamic LVOT obstruction, mimicking hypertrophic obstructive cardiomyopathy in humans. Antihypertensive and antiproliferative drugs reduced growth rate and inhibited LVOT obstruction, thereby preventing loss of function.


Subject(s)
Heart Transplantation , Ventricular Outflow Obstruction, Left , Humans , Animals , Male , Swine , Heterografts , Transplantation, Heterologous/methods , Papio , Insulin-Like Growth Factor I , Antihypertensive Agents , Pilot Projects , Hypertrophy, Left Ventricular , Heart Transplantation/adverse effects , Heart Transplantation/methods
6.
Front Pharmacol ; 14: 1152588, 2023.
Article in English | MEDLINE | ID: mdl-37397469

ABSTRACT

Aim: This study aims to verify the antibacterial and antibiofilm action of cell-free spent medium (CFSM) from four lactic acid bacteria with potential probiotic characteristics (Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus delbrueckii) against two Pseudomonas aeruginosa strains. Main methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the CFSM, antibacterial activity by analysing the formation of inhibition zones, and inhibition of planktonic cultures were determined. Whether an increase in the concentration of CFSM influenced the growth of pathogenic strains and the anti-adhesive activity of the CFSM in biofilm formation (crystal violet and MTT assays) were determined, which were all corroborated by using scanning electron microscopy. Key findings: The relationship between the MIC and MBC values showed a bactericidal or bacteriostatic effect for all the cell-free spent media (CFSMs) tested for P. aeruginosa 9027™ and 27853™ strains. The CFSM supplemental doses of 18 or 22%, 20 or 22%, 46 or 48%, and 50 or 54% of L. acidophilus, L. delbrueckii, L. plantarum, and L. johnsonii, respectively, could completely inhibit the growth of both pathogen strains. The antibiofilm activity of the CFSM in three biofilm conditions (pre-coated, co-incubated, and preformed) demonstrated values ranging between 40% and 80% for biofilm inhibition, and similar results were observed for cell viability. Significance: This work provides strong evidence that the postbiotic derived from different Lactobacilli could be practical as an adjuvant therapy for reducing the use of antibiotics, being a good candidate to overcome the growing challenge of hospital infections due to this pathogen.

7.
Viruses ; 15(7)2023 07 24.
Article in English | MEDLINE | ID: mdl-37515304

ABSTRACT

Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.


Subject(s)
Chimerism , Endogenous Retroviruses , Humans , Swine , Animals , Papio , Endogenous Retroviruses/genetics , Transplantation, Heterologous , RNA
8.
Int. microbiol ; 25(4): 803-815, Nov. 2022. graf
Article in English | IBECS | ID: ibc-216248

ABSTRACT

Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.(AU)


Subject(s)
Animals , Cattle , Breast-Milk Substitutes , Staphylococcal Infections , Microbiota , Mastitis, Bovine , Microbiology
9.
Int Microbiol ; 25(4): 803-815, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35838927

ABSTRACT

Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.


Subject(s)
Mastitis, Bovine , Microbiota , Animals , Bacteria/genetics , Cattle , Female , Health Status , Humans , Mastitis, Bovine/microbiology , Milk/microbiology , RNA, Ribosomal, 16S/genetics
10.
Xenotransplantation ; 29(3): e12749, 2022 05.
Article in English | MEDLINE | ID: mdl-35616211

ABSTRACT

INTRODUCTION: After orthotopic cardiac xenotransplantation, the combination of both the inflammatory responses to the exposure of a recipient to the xenogeneic organ and the use of cardiopulmonary bypass has been assumed to cause detrimental side effects. These have been described not only to affect the transplanted organ (heart) itself, but also the recipient's lungs. In this article, we summarize how these possible detrimental processes can be minimized or even avoided. METHODS: Data from eight pig-to-baboon orthotopic cardiac xenotransplantation experiments were analyzed with a special focus on early (within the first week) postoperative organ dysfunction and systemic inflammatory responses. Non-ischemic heart preservation and the careful management of the heart-lung machine were deemed essential to guarantee not only the immediate function of the transplanted xenogeneic organ but also the prompt recovery of the recipient. RESULTS: After weaning from cardiopulmonary bypass, very low catecholamine amounts were needed to ensure an adequate pump function and cardiac output. Central venous oxygen saturation and serum lactate levels remained within normal ranges. All animals were successfully weaned from ventilation within the first postoperative hours. Serum parameters of the transplants and native kidneys and livers were initially slightly elevated or always normal, as were hemoglobin, LDH, and platelet measurements. Markers of systemic inflammation, C-reactive protein, and IL-6 were slightly elevated, but the reactions caused no lasting damage. CONCLUSION: Consistent short-term and long-term results were achieved after orthotopic cardiac pig-to-baboon transplantation without detrimental inflammatory responses or signs of multiorgan failure. In comparison to allogeneic procedures, non-ischemic heart preservation was important for successful immediate organ function, as was the management of the heart-lung machine. Thus, we believe that genetically modified porcine hearts are ready for use in the clinical setting.


Subject(s)
Heart Transplantation , Transplants , Animals , Heart Transplantation/methods , Heart-Lung Machine , Inflammation , Papio , Swine , Transplantation, Heterologous/methods
12.
Int. microbiol ; 25(1): 189-206, Ene. 2022. graf
Article in English | IBECS | ID: ibc-216022

ABSTRACT

Mastitis is one of the most important causes of loss of cattle production, burdening producers due to the increased cost of milk production and decreased herd productivity. The development of alternative methods for the treatment and prevention of mastitis other than traditional chemical antibiotic therapy needs to be implemented to meet international pressures to reduce the use of these drugs and promote the elimination of multiresistant microbial strains from the environment. Treatment with probiotic bacteria or yeast strains offers a possible strategy for the control of mastitis. The objective of this work was to isolate, identify, and characterize lactic bacteria from milk and the intramammary duct of Gyr, Guzerat, Girolando 1/2, and Holstein cattle breeds from Brazil. Samples of 115 cows were taken, a total of 192 bacteria isolates belonging to 30 species were obtained, and 81 were selected to evaluate their probiotic potential in in vitro characterization tests. In general, bacteria isolated from the mammary gland have low autoaggregation, cell surface hydrophobicity, and co-aggregation with mastitis etiological bacteria Staphylococcus aureus and Escherichia coli. Also, they have biofilm assembly capacity, inability to produce exopolysaccharides, high production of H2O2, and strong antagonism against mastitis pathogens. Ten lactic bacteria isolates were used in co-culture with human MDA-MB-231 breast epithelial cells to assess their adhesion capacity and impairment of the S. aureus invasion. Our results, therefore, contribute to the future production of new prevention and treatment tools for bovine mastitis.(AU)


Subject(s)
Humans , Animals , Lactic Acid , Bacteria , Weissella , Lactobacillus plantarum , Animal Welfare , Mammary Glands, Animal , Microbiology , Mastitis, Bovine
13.
Int Microbiol ; 25(1): 189-206, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34498226

ABSTRACT

Mastitis is one of the most important causes of loss of cattle production, burdening producers due to the increased cost of milk production and decreased herd productivity. The development of alternative methods for the treatment and prevention of mastitis other than traditional chemical antibiotic therapy needs to be implemented to meet international pressures to reduce the use of these drugs and promote the elimination of multiresistant microbial strains from the environment. Treatment with probiotic bacteria or yeast strains offers a possible strategy for the control of mastitis. The objective of this work was to isolate, identify, and characterize lactic bacteria from milk and the intramammary duct of Gyr, Guzerat, Girolando 1/2, and Holstein cattle breeds from Brazil. Samples of 115 cows were taken, a total of 192 bacteria isolates belonging to 30 species were obtained, and 81 were selected to evaluate their probiotic potential in in vitro characterization tests. In general, bacteria isolated from the mammary gland have low autoaggregation, cell surface hydrophobicity, and co-aggregation with mastitis etiological bacteria Staphylococcus aureus and Escherichia coli. Also, they have biofilm assembly capacity, inability to produce exopolysaccharides, high production of H2O2, and strong antagonism against mastitis pathogens. Ten lactic bacteria isolates were used in co-culture with human MDA-MB-231 breast epithelial cells to assess their adhesion capacity and impairment of the S. aureus invasion. Our results, therefore, contribute to the future production of new prevention and treatment tools for bovine mastitis.


Subject(s)
Lactobacillales , Mastitis, Bovine , Probiotics , Staphylococcal Infections , Animals , Cattle , Ecosystem , Female , Hydrogen Peroxide , Mastitis, Bovine/prevention & control , Staphylococcus aureus
14.
Microb Pathog ; 158: 105010, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34126224

ABSTRACT

Amebiasis is the most severe protozoan infection affecting the human intestine, and the second leading cause of death among parasitic diseases. The mechanisms of amoebic virulence factors acquisition are poorly understood, and there are few studies showing the interaction between Entamoeba dispar and bacteria. Salmonella enterica subsp. enterica serovar typhimurium is also a common cause of gastroenteritis in humans. Considering the high rates of amebiasis and salmonellosis, it is possible that these diseases may co-exist in the human intestine, leading to co-infection. Due to the scarcity of studies showing the influence of enteropathogenic bacteria on amoebic virulence, our research group proposed to evaluate the impact of S. typhimurium on E. dispar trophozoites. We assessed whether co-infection of S. typhimurium and E. dispar can change the progression of amoebic colitis, and the inflammatory response profile in the caecum mucosa, using a co-infection experimental model in rats. In vitro assays was used to investigate whether S. typhimurium induces changes in amoebic virulence phenotype. In the present work, we found that S. typhimurium co-infection exacerbates amoebic colitis and intestinal inflammation. The in vitro association of S. typhimurium and E. dispar trophozoites contributed to increase the expression of amoebic virulence factors. Also, we demonstrated, for the first time, the cysteine proteinase 5 expression in E. dispar MCR, VEJ and ADO strains, isolated in Brazil. Together, our results show that S. typhimurium and E. dispar co-infection worsens amoebic colitis, possibly by increasing the expression of amoebic virulence factors.


Subject(s)
Coinfection , Colitis , Entamoeba , Salmonella Infections, Animal , Salmonella enterica , Animals , Humans , Rats , Salmonella , Serogroup , Virulence Factors
15.
Food Res Int ; 137: 109741, 2020 11.
Article in English | MEDLINE | ID: mdl-33233306

ABSTRACT

The relationship between inflammatory bowel disease (IBD) and mood disorders is complex and involves overlapping metabolic pathways, which may determine comorbidity. Several studies have been shown that this comorbidity could worsen IBD clinical course. The treatment of ulcerative colitis is complex, and involves traditional therapy to promote the function of epithelial barrier, reducing exacerbated inflammatory responses. Recently, it has been shown that some probiotic strains could modulate gut-brain axis, reducing depressive and anxiety scores in humans, including IBD patients. Accordingly, this study aimed to evaluate the role of Weissella paramesenteroides WpK4 in murine models of ulcerative colitis and chronic stress. It was observed that bacterium ingestion improved health of colitis mice, reducing intestinal permeability, besides improving colon histopathological appearance. In stressed mice, bacterial consumption was associated with a reduced anxiety-like and depressive-like behaviors. In both assays, the beneficial role of W. paramesenteroides WpK4 was related to its immunomodulatory feature. It is possible to state that W. paramesenteroides WpK4 exerted their beneficial roles in gut-brain axis through their immunomodulatory effects with consequences in several metabolic pathways related to intestinal permeability and hippocampal physiology.


Subject(s)
Colitis , Animals , Anxiety , Brain , Disease Models, Animal , Humans , Mice , Permeability , Weissella
16.
Recent Pat Food Nutr Agric ; 11(1): 82-90, 2020.
Article in English | MEDLINE | ID: mdl-30961519

ABSTRACT

BACKGROUND: For screening probiotic strains with viability and stability in non-dairy foods for health benefits, we revised all patents relating to probiotics in food. OBJECTIVE: Screening of potential probiotics from Brazilian Minas artisanal cheese and verify their survival in frozen Brazilian cocoa pulp. METHODS: Isolation and identification of the strains. The potential probiotic characterization involved gastric juice and bile resistance, antibiotic and antimicrobial activity, hydrophobicity, autoaggregation, coaggregation and adhesion assay in HT-29 cells. Organoleptic, viability and stability of probiotic strain in frozen cocoa pulp were evaluated. RESULTS: Fourteen strains of Lactobacillus plantarum (9), Weissella paramesenteroides (3), Lactobacillus fermentum (1), and Leuconostoc mesenteroides (1) were obtained. Most of the strains were resistant to simulated gastric acidity and bile salts. Almost all strains were sensitive to the antibiotics tested, except to ciprofloxacin and vancomycin. About 47% of the strains are potential producers of bacteriocins. High hydrophobicity was observed for four strains. Autoaggregation ranged from 8.3-72.6% and the coaggregation capacity from 5.2-60.2%. All of the assessed strains presented more than 90% of adhesion to HT-29 intestinal cells. The percentage of Salmonella inhibition in HT-29 cells ranged from 4.7-31.1%. No changes in color, aroma, and pH were observed in cocoa pulps after storage at -20 °C for 90 days. CONCLUSION: Wild strains of acid lactic bacteria from cheese proved to be viable and stable in frozen Brazilian cocoa pulp. This work showed a promising application of L. plantarum isolated strains to be used with frozen cocoa pulp matrix in probiotics food industry.


Subject(s)
Cacao , Cheese/microbiology , Lactobacillus plantarum/growth & development , Microbial Viability , Probiotics/administration & dosage , Freezing , Humans , Industrial Waste , Lactobacillus , Limosilactobacillus fermentum/growth & development , Leuconostoc mesenteroides/growth & development , Patents as Topic , Seeds , Weissella/growth & development
17.
J Food Sci Technol ; 56(9): 3969-3979, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31477968

ABSTRACT

In order to improve cassava's palatability and reduce its toxicity, this root is fermented and applied in foods, such as sour cassava starch used to prepare cheese bread and biscuits. This fermentation occurs spontaneously with lactic acid bacteria (LAB) and yeasts. However, it remains an empirical process, with long duration and lack of product quality homogeneity. This work aims to use starter cultures in a pilot-scale fermentation process for the production of sour cassava starch. After differentiation of strains, Lactobacillus plantarum Lp3, which exhibited great total titratable acidity (TTA) (5.01 ± 0.05%) and antagonistic activity against Bacillus cereus, Escherichia coli and Salmonella Typhimurium, together with Lactobacillus brevis Lb9 (with lesser TTA values: 2.71 ± 0.10%, but amylolytic activity: 2.75 ± 0.61 mm) were tested as single and co-cultures with Saccharomyces cerevisiae UFMG-A1007. LAB and yeasts were inoculated at counts of 8 and 7 log10 CFU/g, respectively, and they remained until the 28th day only in co-culture, highlighting the importance of the yeast for the LAB viability. Although single cultures lead to higher acidity during fermentation, the final product acidity obtained with single cultures did not differ from the acidity obtained with L. plantarum Lp3 in association with S. cerevisiae UFMG-A1007. Therefore, this co-culture exhibited higher potential to be tested as a starter culture in industrial-scale fermentation studies because both microorganisms were in high counts until the end of fermentation and contributed to a final product safe for human consumption, with satisfactory acidity, expansion capacity, and physicochemical properties.

18.
Food Res Int ; 123: 48-55, 2019 09.
Article in English | MEDLINE | ID: mdl-31284997

ABSTRACT

The use of Lactobacillus paracasei strains isolated from kefir grains as starters for the development of functional dairy products was evaluated. The physicochemical and immunomodulatory properties of milks fermented with L. paracasei CIDCA8339, CIDCA83123 and CIDCA83124 were analyzed. The three strains produced bioactive metabolites during fermentation, since the fermented milk supernatants were able to downregulate >75% of the induced innate immune response in vitro. Although all strains presented absence of hemolytic activity and susceptibility to antibiotics, L. paracasei CIDCA8339 presented more attractive probiotic and technological properties. Mice consuming the fermented milk with L. paracasei CIDCA 8339 did not present significant modifications in sIgA levels or TNF-α, TGF-ß and IL-10 mRNA expression in ileum. Additionally, a decrease of INF-γ level in ileum and no microbiological translocation to liver and spleen was observed. These results demonstrate that L. paracasei CIDCA8339 represents a safe promising potential probiotic strain for the development of functional foods.


Subject(s)
Fermentation , Kefir/microbiology , Lacticaseibacillus paracasei/isolation & purification , Milk/microbiology , Animals , Bacterial Translocation , Colony Count, Microbial , Cytokines/metabolism , Female , Food Microbiology , Food Safety , Hemolysis , Immunoglobulin A/metabolism , Lacticaseibacillus paracasei/metabolism , Mice , Mice, Inbred BALB C , Probiotics
19.
Front Microbiol ; 9: 2856, 2018.
Article in English | MEDLINE | ID: mdl-30564201

ABSTRACT

Kefir is a beverage obtained by fermentation of milk or sugar solution by lactic acid bacteria and yeasts, and several health benefits have been attributed to its ingestion, part of them being attributed to Lactobacillus species. The objective of the present study was to evaluate, in vivo, the probiotic potential of Lactobacillus diolivorans 1Z, isolated from Brazilian kefir grains. Initially, conventional mice were orally treated daily or not during 10 days with a suspension of L. diolivorans 1Z, and then orally challenged with Salmonella enterica serovar Typhimurium. Treatment with L. diolivorans 1Z resulted in higher survival (70%) of animals after the challenge with the pathogen than for not treated mice (0%). When germ-free mice were monoassociated (GN-PS group) or not (GN-CS group) with L. diolivorans 1Z and challenged after 7 days with S. Typhimurium, Salmonella fecal counts were significantly lower (P < 0.05) for the GN-PS group when compared to the GN-CS group. Histopathological analysis revealed less damage to the ileum mucosa, as demonstrated by smallest perimeter of major lesions for mice of the GN-PS group in comparison to the group GN-CS (P < 0.05). These findings were accompanied by a lower expression of IFN-γ and TNF-α in the intestinal tissue of GN-PS mice. Additionally, translocation of S. Typhimurium to liver was significantly lower in GN-PS than in GN-CS mice (P < 0.05), and IgA levels in intestinal content and number of Kupffer cells in liver were higher. No difference was observed for hepatic cellularity between GN-PS and GN-CS groups (P > 0.05), but the pattern of inflammatory cells present in the liver was predominantly of polymorphonuclear in GN-CS group and of mononuclear in the GN-PS group, and a higher hepatic expression of IL-10 and TGF-ß was observed in GN-PS group. Concluding, L. diolivorans 1Z showed to be a potential probiotic strain that protected mice from death after challenge with S. Typhimurium, apparently by immunological modulation.

20.
J Dairy Res ; 84(3): 339-345, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28831964

ABSTRACT

Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.


Subject(s)
Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Intestines/microbiology , Kefir/analysis , Acetic Acid/metabolism , Animals , Bacillus cereus/drug effects , Colony Count, Microbial , Escherichia coli/drug effects , Fermentation , Lactic Acid/metabolism , Lactobacillus/metabolism , Lactose/analysis , Male , Mice , Mice, Inbred BALB C , Milk/chemistry , Milk/metabolism , Milk/microbiology , Salmonella/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...