Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Alzheimers Dement ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506634

ABSTRACT

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.

2.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460121

ABSTRACT

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Neuroglia/pathology , Plaque, Amyloid/pathology , Humans
3.
Front Immunol ; 15: 1359534, 2024.
Article in English | MEDLINE | ID: mdl-38352866

ABSTRACT

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Subject(s)
Glomerulonephritis , Toll-Like Receptor 5 , Animals , Female , Humans , Mice , Glomerulonephritis/pathology , Kidney/pathology , Mice, Inbred MRL lpr , Proteinuria
4.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36803190

ABSTRACT

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Subject(s)
Alzheimer Disease , Demyelinating Diseases , Mice , Animals , Alzheimer Disease/metabolism , Cuprizone/metabolism , RNA Splicing , Mutation , Plaque, Amyloid/pathology , Disease Models, Animal , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Microglia/metabolism , Brain/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
5.
Sci Rep ; 12(1): 21576, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517654

ABSTRACT

Pompe disease, an autosomal recessive disorder caused by deficient lysosomal acid α-glucosidase (GAA), is characterized by accumulation of intra-lysosomal glycogen in skeletal and oftentimes cardiac muscle. The c.1935C>A (p.Asp645Glu) variant, the most frequent GAA pathogenic mutation in people of Southern Han Chinese ancestry, causes infantile-onset Pompe disease (IOPD), presenting neonatally with severe hypertrophic cardiomyopathy, profound muscle hypotonia, respiratory failure, and infantile mortality. We applied CRISPR-Cas9 homology-directed repair (HDR) using a novel dual sgRNA approach flanking the target site to generate a Gaaem1935C>A knock-in mouse model and a myoblast cell line carrying the Gaa c.1935C>A mutation. Herein we describe the molecular, biochemical, histological, physiological, and behavioral characterization of 3-month-old homozygous Gaaem1935C>A mice. Homozygous Gaaem1935C>A knock-in mice exhibited normal Gaa mRNA expression levels relative to wild-type mice, had near-abolished GAA enzymatic activity, markedly increased tissue glycogen storage, and concomitantly impaired autophagy. Three-month-old mice demonstrated skeletal muscle weakness and hypertrophic cardiomyopathy but no premature mortality. The Gaaem1935C>A knock-in mouse model recapitulates multiple salient aspects of human IOPD caused by the GAA c.1935C>A pathogenic variant. It is an ideal model to assess innovative therapies to treat IOPD, including personalized therapeutic strategies that correct pathogenic variants, restore GAA activity and produce functional phenotypes.


Subject(s)
Cardiomyopathy, Hypertrophic , Glycogen Storage Disease Type II , alpha-Glucosidases , Animals , Humans , Infant , Mice , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Disease Models, Animal , Glucan 1,4-alpha-Glucosidase , Glycogen/metabolism , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/metabolism , Glycogen Storage Disease Type II/pathology , Muscle, Skeletal/metabolism
6.
Orphanet J Rare Dis ; 17(1): 386, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280881

ABSTRACT

BACKGROUND: Variants in the mitochondrial complex I assembly factor, NUBPL are associated with a rare cause of complex I deficiency mitochondrial disease. Patients affected by complex I deficiency harboring homozygous NUBPL variants typically have neurological problems including seizures, intellectual disability, and ataxia associated with cerebellar hypoplasia. Thus far only 19 cases have been reported worldwide, and no treatment is available for this rare disease. METHODS: To investigate the pathogenesis of NUBPL-associated complex I deficiency, and for translational studies, we generated a knock-in mouse harboring a patient-specific variant Nubpl c.311T>C; p. L104P reported in three families. RESULTS: Similar to Nubpl global knockout mice, the Nubpl p. L104P homozygous mice are lethal at embryonic day E10.5, suggesting that the Nubpl p. L104P variant is likely a hypomorph allele. Given the recent link between Parkinson's disease and loss-of-function NUBPL variants, we also explored aging-related behaviors and immunocytochemical changes in Nubpl hemizygous mice and did not find significant behavioral and pathological changes for alpha-synuclein and oxidative stress markers . CONCLUSION: Our data suggest that homozygotes with Nubpl variants, similar to the null mice, are lethal, and heterozygotes are phenotypically and neuropathologically normal. We propose that a tissue-specific knockout strategy is required to establish a mouse model of Nubpl-associated complex I deficiency disorder for future mechanistic and translational studies.


Subject(s)
Mitochondrial Proteins , alpha-Synuclein , Animals , Mice , Mitochondrial Proteins/genetics , Mutation , Electron Transport Complex I/metabolism , Mice, Knockout
7.
Sci Data ; 8(1): 270, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654824

ABSTRACT

Mouse models of human diseases are invaluable tools for studying pathogenic mechanisms and testing interventions and therapeutics. For disorders such as Alzheimer's disease in which numerous models are being generated, a challenging first step is to identify the most appropriate model and age to effectively evaluate new therapeutic approaches. Here we conducted a detailed phenotypic characterization of the 5xFAD model on a congenic C57BL/6 J strain background, across its lifespan - including a seldomly analyzed 18-month old time point to provide temporally correlated phenotyping of this model and a template for characterization of new models of LOAD as they are generated. This comprehensive analysis included quantification of plaque burden, Aß biochemical levels, and neuropathology, neurophysiological measurements and behavioral and cognitive assessments, and evaluation of microglia, astrocytes, and neurons. Analysis of transcriptional changes was conducted using bulk-tissue generated RNA-seq data from microdissected cortices and hippocampi as a function of aging, which can be explored at the MODEL-AD Explorer and AD Knowledge Portal. This deep-phenotyping pipeline identified novel aspects of age-related pathology in the 5xFAD model.


Subject(s)
Alzheimer Disease/genetics , Disease Models, Animal , Phenotype , Animals , Behavior, Animal , Hippocampus , Long-Term Potentiation , Mice , Mice, Inbred C57BL , RNA-Seq , Synaptic Transmission
8.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33658306

ABSTRACT

Advances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within SCN1A result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a Drosophila knock-in model. To examine the behavioral and cellular effects of this mutation in mammals, we introduced the equivalent KT mutation into the mouse (Mus musculus) Scn1a (Scn1aKT) gene using CRISPR/Cas9 and generated mutant lines in two widely used genetic backgrounds: C57BL/6NJ and 129X1/SvJ. In both backgrounds, mice homozygous for the KT mutation had spontaneous seizures and died by postnatal day (P)23. There was no difference in mortality of heterozygous KT mice compared with wild-type littermates up to six months old. Heterozygous mutants exhibited heat-induced seizures at ∼42°C, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices at permissive temperatures, current-clamp recordings revealed a significantly depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin (PV)-expressing inhibitory CA1 interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. These results suggest that a constitutive decrease in inhibitory interneuron excitability contributes to the seizure phenotype in the mouse model.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel , Seizures, Febrile , Animals , Interneurons , Mice , Mice, Inbred C57BL , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures/genetics
9.
Front Neurosci ; 15: 785276, 2021.
Article in English | MEDLINE | ID: mdl-35140584

ABSTRACT

Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer's disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aß) plaque burden and neurofibrillary tau tangles, biochemical levels of Aß and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.

10.
Pigment Cell Melanoma Res ; 33(2): 279-292, 2020 03.
Article in English | MEDLINE | ID: mdl-31562697

ABSTRACT

MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.


Subject(s)
Homeostasis , Microphthalmia-Associated Transcription Factor/metabolism , Pigmentation , Animals , Binding Sites , Cell Line, Tumor , Eye/pathology , HEK293 Cells , Homeostasis/drug effects , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microphthalmia-Associated Transcription Factor/genetics , Phenotype , Pigmentation/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Isoforms/metabolism , Retinoic Acid Receptor alpha/metabolism , Retinoids/pharmacology
11.
J Biol Chem ; 289(45): 31638-46, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25248747

ABSTRACT

Previous studies have shown that the myeloid-specific deficiency of the transcription factor Krüppel-like factor 2 (KLF2) accelerates atherosclerosis in hypercholesterolemic Ldlr(-/-) mice due to the enhanced adhesion of myeloid cells to activated endothelial cells in the vessel wall. This study revealed elevated basal inflammation with elevated plasma levels of Ccl2, Ccl4, Ccl5, and Ccl11 in the myeloid-specific KLF2 knock-out (myeKlf2(-/-)) mice. Peritoneal macrophages isolated from myeKlf2(-/-) mice showed increased mRNA levels of several inflammatory mediators, including Ccl2, Ccl5, Ccl7, Cox-2, Cxcl1, and IL-6. In contrast, the levels of two microRNAs, miR-124a and miR-150, were lower in Klf2(-/-) macrophages compared with Klf2(+/+) macrophages. Additional studies showed a direct inverse relationship between miR-124a levels with Ccl2 expression, with anti-miR-124a increasing Ccl2 mRNA levels in Klf2(+/+) macrophages, whereas the restoration of miR-124a levels in Klf2(-/-) macrophages significantly reduced Ccl2 mRNA expression. Likewise, the inverse relationship was observed between miR-150 levels and Cxcl1 expression in Klf2(+/+) and Klf2(-/-) mice. Moreover, miR150 likely regulates the miR124a expression and thus augments expression of inflammatory mediators in myeKlf2(-/-) macrophages. This study documented that the transcription factor KLF2 modulates inflammatory chemokine production via regulation of microRNA expression levels in immune cells.


Subject(s)
Gene Expression Regulation , Kruppel-Like Transcription Factors/genetics , Macrophages, Peritoneal/metabolism , MicroRNAs/blood , Animals , Atherosclerosis/genetics , Base Sequence , Binding Sites , Chemokines/metabolism , Female , Inflammation , Kruppel-Like Transcription Factors/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Myeloid Cells/cytology , Myeloid Cells/metabolism
12.
Am J Physiol Heart Circ Physiol ; 301(4): H1396-404, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856916

ABSTRACT

The α(2)-isoform of Na,K-ATPase (α(2)) is thought to play a role in blood pressure regulation, but the specific cell type(s) involved have not been identified. Therefore, it is important to study the role of the α(2) in individual cell types in the cardiovascular system. The present study demonstrates the role of vascular smooth muscle α(2) in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model utilizing the Cre/LoxP system to generate a cell type-specific knockout of the α(2) in vascular smooth muscle cells using the SM22α Cre. We achieved a 90% reduction in the α(2)-expression in heart and vascular smooth muscle in the knockout mice. Interestingly, tail-cuff blood pressure analysis reveals that basal systolic blood pressure is unaffected by the knockout of α(2) in the knockout mice. However, knockout mice do fail to develop ACTH-induced hypertension, as seen in wild-type mice, following 5 days of treatment with ACTH (Cortrosyn; wild type = 119.0 ± 6.8 mmHg; knockout = 103.0 ± 2.0 mmHg). These results demonstrate that α(2)-expression in heart and vascular smooth muscle is not essential for regulation of basal systolic blood pressure, but α(2) is critical for blood pressure regulation under chronic stress such as ACTH-induced hypertension.


Subject(s)
Adrenocorticotropic Hormone , Blood Pressure/genetics , Blood Pressure/physiology , Cardiovascular System/enzymology , Hypertension/genetics , Hypertension/prevention & control , Sodium-Potassium-Exchanging ATPase/physiology , Animals , Blotting, Western , Cardiomegaly/metabolism , Cardiovascular Physiological Phenomena/genetics , Cell Separation , Hypertension/chemically induced , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Microsomes/metabolism , Muscle Proteins/metabolism , Mutagenesis, Insertional , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/physiology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/physiology , Recombination, Genetic , Regional Blood Flow/physiology , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Potassium-Exchanging ATPase/genetics , Vascular Resistance/physiology
13.
Physiol Genomics ; 43(7): 317-24, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21205871

ABSTRACT

The mechanisms for provisioning maternal resources to offspring in placental mammals involve complex interactions between maternally regulated and fetally regulated gene networks in the placenta, a tissue that is derived from the zygote and therefore of fetal origin. Here we describe a novel use of an embryo transfer system in mice to identify gene networks in the placenta that are regulated by the mother. Mouse embryos from the same strain of inbred mice were transferred into a surrogate mother either of the same strain or from a different strain, allowing maternal and fetal effects on the placenta to be separated. After correction for sex and litter size, maternal strain overrode fetal strain as the key determinant of fetal weight (P < 0.0001). Computational filtering of the placental transcriptome revealed a group of 81 genes whose expression was solely dependent on the maternal strain [P < 0.05, false discovery rate (FDR) < 0.10]. Network analysis of this group of genes yielded highest statistical significance for pathways involved in the regulation of cell growth (such as insulin-like growth factors) as well as those involved in regulating lipid metabolism [such as the low-density lipoprotein receptor-related protein 1 (LRP1), LDL, and HDL], both of which are known to play a role in fetal development. This novel technique may be generally applied to identify regulatory networks involved in maternal-fetal interaction and eventually help identify molecular targets in disorders of fetal growth.


Subject(s)
Embryo Transfer/methods , Gene Regulatory Networks/physiology , Placenta/metabolism , Animals , Female , Fetal Weight/genetics , Fetal Weight/physiology , Gene Regulatory Networks/genetics , Genotype , Male , Mice , Pregnancy
14.
J Biol Chem ; 279(32): 33742-50, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15178683

ABSTRACT

The relative importance of plasma membrane Ca2+-ATPase (PMCA) 1 and PMCA4 was assessed in mice carrying null mutations in their genes (Atp2b1 and Atp2b4). Loss of both copies of the gene encoding PMCA1 caused embryolethality, whereas heterozygous mutants had no overt disease phenotype. Despite widespread and abundant expression of PMCA4, PMCA4 null (Pmca4-/-) mutants exhibited no embryolethality and appeared outwardly normal. Loss of PMCA4 impaired phasic contractions and caused apoptosis in portal vein smooth muscle in vitro; however, this phenotype was dependent on the mouse strain being employed. Pmca4-/- mice on a Black Swiss background did not exhibit the phenotype unless they also carried a null mutation in one copy of the Pmca1 gene. Pmca4-/- male mice were infertile but had normal spermatogenesis and mating behavior. Pmca4-/- sperm that had not undergone capacitation exhibited normal motility but could not achieve hyperactivated motility needed to traverse the female genital tract. Ultrastructure of the motility apparatus in Pmca4-/- sperm tails was normal, but an increased incidence of mitochondrial condensation indicated Ca2+ overload. Immunoblotting and immunohistochemistry showed that PMCA4 is the most abundant isoform in testis and sperm and that it is localized to the principle piece of the sperm tail, which is also the location of the major Ca2+ channel (CatSper) required for sperm motility. These results are consistent with an essential housekeeping or developmental function for PMCA1, but not PMCA4, and show that PMCA4 expression in the principle piece of the sperm tail is essential for hyperactivated motility and male fertility.


Subject(s)
Calcium-Transporting ATPases/physiology , Fertility/physiology , Sperm Motility/physiology , Alleles , Animals , Apoptosis , Binding Sites/genetics , Blotting, Northern , Calcium-Transporting ATPases/analysis , Calcium-Transporting ATPases/genetics , Cation Transport Proteins , Heterozygote , Immunoblotting , Immunohistochemistry , Male , Mice , Mice, Knockout , Microscopy, Electron , Muscle Contraction , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Mutagenesis , Phenotype , Phosphorylation , Plasma Membrane Calcium-Transporting ATPases , Portal Vein/cytology , Portal Vein/physiology , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sperm Tail/chemistry , Spermatozoa/chemistry , Spermatozoa/ultrastructure
15.
J Biol Chem ; 278(52): 53026-34, 2003 Dec 26.
Article in English | MEDLINE | ID: mdl-14559919

ABSTRACT

Inhibition of Na,K-ATPase activity by cardiac glycosides is believed to be the major mechanism by which this class of drugs increases heart contractility. However, direct evidence demonstrating this is lacking. Furthermore it is unknown which specific alpha isoform of Na,K-ATPase is responsible for the effect of cardiac glycosides. Several studies also suggest that cardiac glycosides, such as ouabain, function by mechanisms other than inhibition of the Na,K-ATPase. To determine whether Na,K-ATPase, specifically the alpha2 Na,K-ATPase isozyme, mediates ouabain-induced cardiac inotropy, we developed animals expressing a ouabain-insensitive alpha2 isoform of the Na,K-ATPase using Cre-Lox technology and analyzed cardiac contractility after administration of ouabain. The homozygous knock-in animals were born in normal Mendelian ratio and developed normally to adulthood. Analysis of their cardiovascular function demonstrated normal heart function. Cardiac contractility analysis in isolated hearts and in intact animals demonstrated that ouabain-induced cardiac inotropy occurred in hearts from wild type but not from the targeted animals. These results clearly demonstrate that the Na,K-ATPase and specifically the alpha2 Na,K-ATPase isozyme mediates ouabain-induced cardiac contractility in mice.


Subject(s)
Myocardial Contraction/physiology , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/physiology , Alleles , Animals , Blotting, Southern , Blotting, Western , Dobutamine/pharmacology , Dose-Response Relationship, Drug , Glycosides/chemistry , Heart/drug effects , Hemodynamics , Homozygote , Mice , Microsomes/metabolism , Models, Genetic , Mutagenesis, Site-Directed , Mutation , Ouabain/metabolism , Protein Isoforms , Tissue Distribution
16.
Ann N Y Acad Sci ; 986: 354-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12763850

ABSTRACT

The Na,K-ATPase is composed of two subunits, alpha and beta, and each subunit consists of multiple isoforms. In the case of alpha, four isoforms, alpha1, alpha2, alpha3, and alpha4 are present in mammalian cells. The distribution of these isoforms is tissue- and developmental-specific, suggesting that they may play specific roles, either during development or coupled to specific physiological processes. In order to understand the functional properties of each of these isoforms, we are using gene targeting, where animals are produced lacking either one copy or both copies of the corresponding gene or have a modified gene. To date, we have produced animals lacking the alpha1 and alpha2 isoform genes. Animals lacking both copies of the alpha1 isoform gene are not viable, while animals lacking both copies of the alpha2 isoform gene make it to birth, but are either born dead or die very soon after. In the case of animals lacking one copy of the alpha1 or alpha2 isoform gene, the animals survive and appear healthy. Heart and EDL muscle from animals lacking one copy of the alpha2 isoform exhibit an increase in force of contraction, while there is reduced force of contraction in both muscles from animals lacking one copy of the alpha1 isoform gene. These studies indicate that the alpha1 and alpha2 isoforms carry out different physiological roles. The alpha2 isoform appears to be involved in regulating Ca(2+) transients involved in muscle contraction, while the alpha1 isoform probably plays a more generalized role. While we have not yet knocked out the alpha3 or alpha4 isoform genes, studies to date indicate that the alpha4 isoform is necessary to maintain sperm motility. It is thus possible that the alpha2, alpha3, and alpha4 isoforms are involved in specialized functions of various tissues, helping to explain their tissue- and developmental-specific regulation.


Subject(s)
Myocardium/enzymology , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Calcium/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Muscle, Skeletal/enzymology , Protein Subunits/chemistry , Protein Subunits/metabolism
17.
Am J Physiol Renal Physiol ; 284(6): F1190-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12582007

ABSTRACT

The degree to which loss of the NHE3 Na(+)/H(+) exchanger in the kidney contributes to impaired Na(+)-fluid volume homeostasis in NHE3-deficient (Nhe3(-/-)) mice is unclear because of the coexisting intestinal absorptive defect. To more accurately assess the renal effects of NHE3 ablation, we developed a mouse with transgenic expression of rat NHE3 in the intestine and crossed it with Nhe3(-/-) mice. Transgenic Nhe3(-/-) (tgNhe3(-/-)) mice tolerated dietary NaCl depletion better than nontransgenic knockouts and showed no evidence of renal salt wasting. Unlike nontransgenic Nhe3(-/-) mice, tgNhe3(-/-) mice tolerated a 5% NaCl diet. When fed a 5% NaCl diet, tgNhe3(-/-) mice had lower serum aldosterone than tgNhe3(-/-) mice on a 1% NaCl diet, indicating improved extracellular fluid volume status. Na(+)-loaded tgNhe3(-/-) mice had sharply increased urinary Na(+) excretion, reflective of increased absorption of Na(+) in the small intestine; nevertheless, they remained hypotensive, and renal studies showed a reduction in glomerular filtration rate (GFR) similar to that observed in nontransgenic Nhe3(-/-) mice. These data show that reduced GFR, rather than being secondary to systemic hypovolemia, is a major renal compensatory mechanism for the loss of NHE3 and indicate that loss of NHE3 in the kidney alters the set point for Na(+)-fluid volume homeostasis.


Subject(s)
Intestinal Absorption/genetics , Intestinal Absorption/physiology , Kidney/physiology , Sodium-Hydrogen Exchangers/physiology , Aldosterone/blood , Animals , Blood Pressure/physiology , Blotting, Northern , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Diet, Sodium-Restricted , Extracellular Space/physiology , Glomerular Filtration Rate , Heart Rate/physiology , Hypotension/physiopathology , Intestine, Small/metabolism , Mice , Mice, Transgenic , RNA/biosynthesis , RNA/isolation & purification , Rats , Renal Circulation/physiology , Sodium/pharmacology , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...