Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(22): 4032-4046.e6, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977116

ABSTRACT

Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.


Subject(s)
Cellular Senescence , DNA Damage , Cell Cycle/genetics , Cell Division , Cellular Senescence/genetics , Homeostasis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
FEBS J ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986656

ABSTRACT

Cellular senescence refers to a permanent and stable state of cell cycle exit. This process plays an important role in many cellular functions, including tumor suppression. It was first noted that senescence is associated with increased cell size in the early 1960s; however, how this contributes to permanent cell cycle exit was poorly understood until recently. In this review, we discuss new findings that identify increased cell size as not only a consequence but also a cause of permanent cell cycle exit. We highlight recent insights into how increased cell size alters normal cellular physiology and creates homeostatic imbalances that contribute to senescence induction. Finally, we focus on the potential clinical implications of these findings in the context of cell cycle arrest-causing cancer therapeutics and speculate on how tumor cell size changes may impact outcomes in patients treated with these drugs.

3.
Front Cell Dev Biol ; 11: 1118766, 2023.
Article in English | MEDLINE | ID: mdl-37123399

ABSTRACT

Prolonged cell cycle arrests occur naturally in differentiated cells and in response to various stresses such as nutrient deprivation or treatment with chemotherapeutic agents. Whether and how cells survive prolonged cell cycle arrests is not clear. Here, we used S. cerevisiae to compare physiological cell cycle arrests and genetically induced arrests in G1-, meta- and anaphase. Prolonged cell cycle arrest led to growth attenuation in all studied conditions, coincided with activation of the Environmental Stress Response (ESR) and with a reduced ribosome content as determined by whole ribosome purification and TMT mass spectrometry. Suppression of the ESR through hyperactivation of the Ras/PKA pathway reduced cell viability during prolonged arrests, demonstrating a cytoprotective role of the ESR. Attenuation of cell growth and activation of stress induced signaling pathways also occur in arrested human cell lines, raising the possibility that the response to prolonged cell cycle arrest is conserved.

4.
Trends Cell Biol ; 30(3): 213-225, 2020 03.
Article in English | MEDLINE | ID: mdl-31980346

ABSTRACT

Cell density shows very little variation within a given cell type. For example, in humans variability in cell density among cells of a given cell type is 100 times smaller than variation in cell mass. This tight control indicates that maintenance of a cell type-specific cell density is important for cell function. Indeed, pathological conditions such as cellular senescence are accompanied by changes in cell density. Despite the apparent importance of cell-type-specific density, we know little about how cell density affects cell function, how it is controlled, and how it sometimes changes as part of a developmental process or in response to changes in the environment. The recent development of new technologies to accurately measure the cell density of single cells in suspension and in tissues is likely to provide answers to these important questions.


Subject(s)
Cells/cytology , Animals , Cell Count , Cytological Techniques , Humans , Models, Biological
5.
Cell ; 176(5): 1083-1097.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30739799

ABSTRACT

Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.


Subject(s)
Cell Enlargement , Cellular Senescence/physiology , Cytoplasm/metabolism , Candida albicans/genetics , Candida albicans/growth & development , Cell Cycle , Cell Proliferation , Cell Size , Cellular Senescence/genetics , Fibroblasts/metabolism , HEK293 Cells , Humans , Primary Cell Culture , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomycetales/genetics , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Signal Transduction
6.
Genes Dev ; 32(15-16): 1075-1084, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30042134

ABSTRACT

Budding yeast cells produce a finite number of daughter cells before they die. Why old yeast cells stop dividing and die is unclear. We found that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death. We further identified extrachromosomal rDNA (ribosomal DNA) circles (ERCs) to cause the G1/S cyclin expression defect in old cells. Spontaneous segregation of Whi5 and ERCs into daughter cells rejuvenates old mothers, but daughters that inherit these aging factors die rapidly. Our results identify deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast.


Subject(s)
G1 Phase Cell Cycle Checkpoints , Aneuploidy , Cell Division , Cyclin G1/genetics , Cyclin G1/metabolism , DNA Damage , DNA, Ribosomal/chemistry , Fungal Proteins/metabolism , Gene Expression , Saccharomycetales/cytology , Saccharomycetales/genetics , Saccharomycetales/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL