Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-38148986

ABSTRACT

Immunofluorescence microscopy is a widely adopted method for studying meiotic prophase in the nematode model organism, Caenorhabditis elegans . An in-depth examination of specific meiotic processes requires the quantitative analysis of immunofluorescence images, which often involves the segmentation of individual cells or nuclei. Here, we introduce our image analysis pipeline to automate significant portions of this task. This pipeline relies on the powerful deep learning model Cellpose 2.0 to segment cellular structures. To further improve the segmentation accuracy for germline nuclei stained for chromatin or synaptonemal complexes, we retrained the generalist Cellpose model and integrated our data processing pipeline into the easy-to-use Cell-ACDC image analysis software. Our pipeline thus makes deep learning-based segmentation of nuclei in the distal germline of C. elegans accessible for users without coding experience.

2.
J Mater Chem B ; 11(36): 8697-8716, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37646077

ABSTRACT

Currently, multidrug-resistant (MDR) infections are one of the most important threats, driving the search for new antimicrobial compounds. Cationic peptide antibiotics (CPAs) and ceragenins (CSAs) contain in their structures cationic groups and adopt a facially amphiphilic conformation, conferring the ability to permeate the membranes of bacteria and fungi. Keeping these features in mind, an amine steroid, DOCA-NH2, was found to be active against reference strains and MDR isolates of Gram-positive Enterococcus faecalis and Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa. The compound was active against all the tested microorganisms, having bactericidal and fungicidal activity, displaying minimal inhibitory concentrations (MICs) between 16 and 128 µg mL-1. No synergy with clinically relevant antibacterial drugs was found. However, the compound was able to completely inhibit the biofilm formation of bacteria exposed to the MIC of the compound. For E. coli and E. faecalis, inhibition of biofilm formation occurred at half the MIC. Besides, DOCA-NH2 inhibited the dimorphic transition of Candida albicans at concentrations 4 times lower than the MIC, and can reduce the microorganism virulence and biofilm formation was significantly reduced at both MIC and half the MIC. Polydimethylsiloxane-based coatings containing DOCA-NH2 (0.5, 1.0, and 1.5 wt%) were prepared and tested against the E. coli biofilm formation under hydrodynamic conditions similar to those prevailing in ureteral stents. A biofilm reduction of approximately 80% was achieved when compared to the control.


Subject(s)
Anti-Infective Agents , Desoxycorticosterone Acetate , Urinary Tract Infections , Humans , Escherichia coli , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/drug therapy , Amines , Biofilms , Cations
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430942

ABSTRACT

The overexpression of efflux pumps is one of the strategies used by bacteria to resist antibiotics and could be targeted to circumvent the antibiotic crisis. In this work, a series of trimethoxybenzoic acid derivatives previously described as antifouling compounds was explored for potential antimicrobial activity and efflux pump (EP) inhibition. First, docking studies on the acridine resistance proteins A and B coupled to the outer membrane channel TolC (AcrAB-TolC) efflux system and a homology model of the quinolone resistance protein NorA EP were performed on 11 potential bioactive trimethoxybenzoic acid and gallic acid derivatives. The synthesis of one new trimethoxybenzoic acid derivative (derivative 13) was accomplished. To investigate the potential of this series of 11 derivatives as antimicrobial agents, and in reverting drug resistance, the minimum inhibitory concentration was determined on several strains (bacteria and fungi), and synergy with antibiotics and EP inhibition were investigated. Derivative 10 showed antibacterial activity against the studied strains, derivatives 5 and 6 showed the ability to inhibit EPs in the acrA gene inactivated mutant Salmonella enterica serovar Typhimurium SL1344, and 6 also inhibited EPs in Staphylococcus aureus 272123. Structure-activity relationships highlighted trimethoxybenzoic acid as important for EP inhibitory activity. Although further studies are necessary, these results show the potential of simple trimethoxybenzoic acid derivatives as a source of feasible EP inhibitors.


Subject(s)
Bacterial Proteins , Gallic Acid , Gallic Acid/pharmacology , Gallic Acid/metabolism , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Staphylococcus aureus/metabolism
4.
Mar Drugs ; 19(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34940681

ABSTRACT

Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone-triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.


Subject(s)
Acetophenones/pharmacology , Biofouling/prevention & control , Disinfectants/pharmacology , Triazoles/pharmacology , Acetophenones/chemistry , Animals , Aquatic Organisms , Biofilms/drug effects , Bivalvia/drug effects , Disinfectants/chemistry , Larva/drug effects , Microalgae/drug effects , Structure-Activity Relationship , Triazoles/chemistry
5.
Ecotoxicol Environ Saf ; 228: 112970, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34775347

ABSTRACT

The accumulation of marine biofouling on ship hulls causes material damage, the spread of invasive species, and, indirectly, an increase in full consumption and subsequent pollutant gas emissions. Most efficient antifouling (AF) strategies rely on the conventional release of persistent, bioaccumulative, and toxic biocides incorporated in marine coatings. A simple oxygenated xanthone, 3,4-dihydroxyxanthone (1), was previously reported as a promising AF agent toward the settlement of Mytilus galloprovincialis larvae, with a therapeutic ratio higher than the commercial biocide Econea®. In this work, a structure-AF activity relationship study, an evaluation of environmental fate, and an AF efficiency in marine coatings were performed with compound 1. Hydroxy or methoxy groups at 3 and 4 positions in compound 1 favored AF activity, and groups with higher steric hindrances were detrimental. Compound 1 demonstrated low water-solubility and a short half-life in natural seawater, contrary to Econea®. In silico environmental fate predictions showed that compound 1 does not bioaccumulate in organism tissues, in contrast to other current emerging biocides, has a moderate affinity for sediments and slow migrates to ground water. No toxicity was observed against Vibrio fischeri and Phaeodactylum tricornutum. Polyurethane-based marine coatings containing compound 1 prepared through an innovative non-release-strategy were as efficient as those containing Econea® with low releases to water after 45 days. This proof-of-concept helped to establish compound 1 as a promising eco-friendly AF agent.

6.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165717, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32035103

ABSTRACT

Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.


Subject(s)
Positron-Emission Tomography , Precision Medicine , Radiopharmaceuticals/therapeutic use , Tomography, X-Ray Computed , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Male , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology
7.
Cell Oncol (Dordr) ; 41(3): 335-341, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29633150

ABSTRACT

The 21st annual meeting of the Portuguese Society of Human Genetics (SPGH), organized by Luísa Romão, Ana Sousa and Rosário Pinto Leite, was held in Caparica, Portugal, from the 16th to the 18th of November 2017. Having entered an era in which personalized medicine is emerging as a paradigm for disease diagnosis, treatment and prevention, the program of this meeting intended to include lectures by leading national and international scientists presenting exceptional findings on the genetics of personalized medicine. Various topics were discussed, including cancer genetics, transcriptome dynamics and novel therapeutics for cancers and rare disorders that are designed to specifically target molecular alterations in individual patients. Several panel discussions were held to emphasize (ethical) issues associated with personalized medicine, including genetic cancer counseling.


Subject(s)
Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Rare Diseases/genetics , Rare Diseases/therapy , Genetic Counseling , Humans , Portugal , Transcriptome
8.
Eur J Pharm Sci ; 109: 464-471, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28887231

ABSTRACT

Liver ischaemia-reperfusion injury (IRI) may occur during hepatic surgery and is unavoidable in liver transplantation. Superoxide dismutase enzymosomes (SOD-enzymosomes), liposomes where SOD is at the liposomal surface expressing enzymatic activity in intact form without the need of liposomal disruption, were developed with the aim of having a better insight into its antioxidant therapeutic outcome in IRI. We also aimed at validating magnetic resonance microscopy (MRM) at 7T as a tool to follow IRI. SOD-enzymosomes were characterized and tested in a rat ischaemia-reperfusion model and the therapeutic outcome was compared with conventional long circulating SOD liposomes and free SOD using biochemical liver injury biomarkers, histology and MRM. MRM results correlated with those obtained using classical biochemical biomarkers of liver injury and liver histology. Moreover, MRM images suggested that the therapeutic efficacy of both SOD liposomal formulations used was related to prevention of peripheral biliary ductular damage and disrupted vascular architecture. Therefore, MRM at 7T is a useful technique to follow IRI. SOD-enzymosomes were more effective than conventional liposomes in reducing liver ischaemia-reperfusion injury and this may be due to a short therapeutic window.


Subject(s)
Reperfusion Injury/drug therapy , Superoxide Dismutase/administration & dosage , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Liposomes , Liver/drug effects , Liver/metabolism , Liver/pathology , Magnetic Resonance Spectroscopy , Male , Microscopy/methods , Rats, Wistar , Reperfusion Injury/blood , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Superoxide Dismutase/therapeutic use , Transcription Factor RelA/metabolism , gamma-Glutamyltransferase/blood
9.
Pharmaceuticals (Basel) ; 9(3)2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27367704

ABSTRACT

Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin's low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin.

SELECTION OF CITATIONS
SEARCH DETAIL
...