Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (193)2023 03 24.
Article in English | MEDLINE | ID: mdl-37036217

ABSTRACT

The execution of complex and highly coordinated motor programs, such as walking and running, is dependent on the rhythmic activation of spinal and supra-spinal circuits. After a thoracic spinal cord injury, communication with upstream circuits is impaired. This, in turn, leads to a loss of coordination, with limited recovery potential. Hence, to better evaluate the degree of recovery after the administration of drugs or therapies, there is a necessity for new, more detailed, and accurate tools to quantify gait, limb coordination, and other fine aspects of locomotor behavior in animal models of spinal cord injury. Several assays have been developed over the years to quantitatively assess free-walking behavior in rodents; however, they usually lack direct measurements related to stepping gait strategies, footprint patterns, and coordination. To address these shortcomings, an updated version of the MouseWalker, which combines a frustrated total internal reflection (fTIR) walkway with tracking and quantification software, is provided. This open-source system has been adapted to extract several graphical outputs and kinematic parameters, and a set of post-quantification tools can be to analyze the output data provided. This manuscript also demonstrates how this method, allied with already established behavioral tests, quantitatively describes locomotor deficits following spinal cord injury.


Subject(s)
Spinal Cord Injuries , Walking , Mice , Animals , Gait/physiology , Disease Models, Animal , Spine , Spinal Cord , Recovery of Function/physiology
2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047406

ABSTRACT

Traumatic spinal cord injury (SCI) initiates a cascade of cellular events, culminating in irreversible tissue loss and neuroinflammation. After the trauma, the blood vessels are destroyed. The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, is disrupted, facilitating the infiltration of immune cells, and contributing to a toxic spinal microenvironment, affecting axonal regeneration. Understanding how the vascular constituents of the BSCB respond to injury is crucial to prevent BSCB impairment and to improve spinal cord repair. Here, we focus our attention on the vascular transcriptome at 3- and 7-days post-injury (dpi), during which BSCB is abnormally leaky, to identify potential molecular players that are injury-specific. Using the mouse contusion model, we identified Cd9 and Mylip genes as differentially expressed at 3 and 7 dpi. CD9 and MYLIP expression were injury-induced on vascular cells, endothelial cells and pericytes, at the injury epicentre at 7 dpi, with a spatial expression predominantly at the caudal region of the lesion. These results establish CD9 and MYLIP as two new potential players after SCI, and future studies targeting their expression might bring promising results for spinal cord repair.


Subject(s)
Endothelial Cells , Spinal Cord Injuries , Mice , Animals , Endothelial Cells/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Pericytes/metabolism , Disease Models, Animal , Gene Expression Profiling , Blood-Brain Barrier/metabolism
3.
Cell Rep ; 36(1): 109334, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233184

ABSTRACT

Persistent senescent cells (SCs) are known to underlie aging-related chronic disorders, but it is now recognized that SCs may be at the center of tissue remodeling events, namely during development or organ repair. In this study, we show that two distinct senescence profiles are induced in the context of a spinal cord injury between the regenerative zebrafish and the scarring mouse. Whereas induced SCs in zebrafish are progressively cleared out, they accumulate over time in mice. Depletion of SCs in spinal-cord-injured mice, with different senolytic drugs, improves locomotor, sensory, and bladder functions. This functional recovery is associated with improved myelin sparing, reduced fibrotic scar, and attenuated inflammation, which correlate with a decreased secretion of pro-fibrotic and pro-inflammatory factors. Targeting SCs is a promising therapeutic strategy not only for spinal cord injuries but potentially for other organs that lack regenerative competence.


Subject(s)
Cellular Senescence , Recovery of Function , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Cell Count , Cellular Senescence/drug effects , Cicatrix/pathology , Disease Models, Animal , Down-Regulation/drug effects , Fibrosis , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/pathology , Mice, Inbred C57BL , Motor Activity/drug effects , Myelin Sheath/metabolism , Neurons/drug effects , Neurons/pathology , Recovery of Function/drug effects , Senotherapeutics/administration & dosage , Senotherapeutics/pharmacology , Sensation/drug effects , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/physiopathology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder/physiopathology , White Matter/drug effects , White Matter/pathology , White Matter/physiopathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL