Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(23): 15750-15760, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38009718

ABSTRACT

CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo.


Subject(s)
AMP-Activated Protein Kinases , Liver Neoplasms , Male , Humans , AMP-Activated Protein Kinases/metabolism , Calcium , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Ligands
2.
PLoS One ; 16(2): e0247199, 2021.
Article in English | MEDLINE | ID: mdl-33607650

ABSTRACT

The receptor for Colony Stimulating Factor 1 (CSF1), c-fms, is highly expressed on mature osteoclasts suggesting a role for this cytokine in regulating the function of these cells. Consistent with this idea, in vitro studies have documented a variety of effects of CSF1 in mature osteoclasts. To better define the role of CSF1 in these cells, we conditionally deleted c-fms in osteoclasts (c-fms-OC-/-) by crossing c-fmsflox/flox mice with mice expressing Cre under the control of the cathepsin K promoter. The c-fms-OC-/- mice were of normal weight and had normal tooth eruption. However, when quantified by DXA, bone mass was significantly higher in the spine and femur of female knock out mice and in the femurs of male knock out mice. MicroCT analyses of femurs showed that female c-fms-OC-/- mice had significantly increased trabecular bone mass with a similar trend in males and both sexes demonstrated significantly increased trabecular number and reduced trabecular spacing. Histomorphometric analysis of the femoral trabecular bone compartment demonstrated a trend towards increased numbers of osteoclasts, +26% in Noc/BPm and +22% in OcS/BS in the k/o animals but this change was not significant. However, when the cellular volume of osteoclasts was quantified, the c-fms-OC-/- cells were found to be significantly smaller than controls. Mature osteoclasts show a marked spreading response when exposed to CSF1 in a non-gradient fashion. However, osteoclasts freshly isolated from c-fms-OC-/- mice had a near complete abrogation of this response. C-fms-OC-/- mice treated with (1-34)hPTH 80 ng/kg/d in single daily subcutaneous doses for 29 days showed an attenuated anabolic response in trabecular bone compared to wild-type animals. Taken together, these data indicate an important non-redundant role for c-fms in regulating mature osteoclast function in vivo.


Subject(s)
Receptor, Macrophage Colony-Stimulating Factor/genetics , Animals , Bone Density/drug effects , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Cell Differentiation , Female , Femur/cytology , Femur/metabolism , Femur/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis , Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/deficiency , X-Ray Microtomography
3.
Immunity ; 45(6): 1219-1231, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27913094

ABSTRACT

Hematopoietic stem cells (HSCs) self-renew in bone marrow niches formed by mesenchymal progenitors and endothelial cells expressing the chemokine CXCL12, but whether a separate niche instructs multipotent progenitor (MPP) differentiation remains unclear. We show that MPPs resided in HSC niches, where they encountered lineage-instructive differentiation signals. Conditional deletion of the chemokine receptor CXCR4 in MPPs reduced differentiation into common lymphoid progenitors (CLPs), which decreased lymphopoiesis. CXCR4 was required for CLP positioning near Interleukin-7+ (IL-7) cells and for optimal IL-7 receptor signaling. IL-7+ cells expressed CXCL12 and the cytokine SCF, were mesenchymal progenitors capable of differentiation into osteoblasts and adipocytes, and comprised a minor subset of sinusoidal endothelial cells. Conditional Il7 deletion in mesenchymal progenitors reduced B-lineage committed CLPs, while conditional Cxcl12 or Scf deletion from IL-7+ cells reduced HSC and MPP numbers. Thus, HSC maintenance and multilineage differentiation are distinct cell lineage decisions that are both controlled by HSC niches.


Subject(s)
Cell Differentiation/physiology , Hematopoietic Stem Cells/cytology , Multipotent Stem Cells/cytology , Stem Cell Niche/physiology , Animals , Cell Lineage/physiology , Cell Separation , Chemokine CXCL2/metabolism , Flow Cytometry , Interleukin-7/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
Clin Rev Allergy Immunol ; 51(1): 59-78, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26511861

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self proteins and are major drivers of disease. T lymphocytes also promote RA independently of B lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that promote pathology. While the innate signals that initiate self-reactive adaptive immune responses are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that require short-range signals, such as the cytokines MCSF and RANKL, for undergoing differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast differentiation by chemoattractants is an important point of control for osteoclastogenesis and bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol, were identified as important regulators of osteoclast precursor positioning in proximity to bone surfaces and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease and are of great interest. Furthering our understanding of the complex osteoimmune cell interactions should provide new avenues of therapeutic intervention for RA.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Cell Movement , Osteoclasts/metabolism , Animals , Arthritis, Rheumatoid/pathology , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Differentiation , Cellular Microenvironment , Chemotaxis , Homeostasis , Humans , Immunity, Innate , Lymphocytes/immunology , Lymphocytes/metabolism , Osteoclasts/cytology , RANK Ligand/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology
5.
J Bone Miner Res ; 31(4): 864-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26496249

ABSTRACT

Rac1 and Rac2 are thought to have important roles in osteoclasts. Therefore, mice with deletion of both Rac1 and Rac2 in mature osteoclasts (DKO) were generated by crossing Rac1(flox/flox) mice with mice expressing Cre in the cathepsin K locus and then mating these animals with Rac2(-/-) mice. DKO mice had markedly impaired tooth eruption. Bone mineral density (BMD) was increased 21% to 33% in 4- to 6-week-old DKO mice at all sites when measured by dual-energy X-ray absorptiometry (DXA) and serum cross-linked C-telopeptide (CTx) was reduced by 52%. The amount of metaphyseal trabecular bone was markedly increased in DKO mice, but the cortices were very thin. Spinal trabecular bone mass was increased. Histomorphometry revealed significant reductions in both osteoclast and osteoblast number and function in 4- to 6-week-old DKO animals. In 14- to 16-week-old animals, osteoclast number was increased, although bone density was further increased. DKO osteoclasts had severely impaired actin ring formation, an impaired ability to generate acid, and reduced resorptive activity in vitro. In addition, their life span ex vivo was reduced. DKO osteoblasts expressed normal differentiation markers except for the expression of osterix, which was reduced. The DKO osteoblasts mineralized normally in vitro, indicating that the in vivo defect in osteoblast function was not cell autonomous. Confocal imaging demonstrated focal disruption of the osteocytic dendritic network in DKO cortical bone. Despite these changes, DKO animals had a normal response to treatment with once-daily parathyroid hormone (PTH). We conclude that Rac1 and Rac2 have critical roles in skeletal metabolism.


Subject(s)
Aging , Gene Deletion , Neuropeptides , Osteoblasts , Osteoclasts , Osteopetrosis , rac GTP-Binding Proteins , rac1 GTP-Binding Protein , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Cell Count , Humans , Mice , Mice, Knockout , Neuropeptides/genetics , Neuropeptides/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteopetrosis/genetics , Osteopetrosis/metabolism , Osteopetrosis/pathology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein
6.
J Exp Med ; 212(11): 1931-46, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26438360

ABSTRACT

Bone surfaces attract hematopoietic and nonhematopoietic cells, such as osteoclasts (OCs) and osteoblasts (OBs), and are targeted by bone metastatic cancers. However, the mechanisms guiding cells toward bone surfaces are essentially unknown. Here, we show that the Gαi protein-coupled receptor (GPCR) EBI2 is expressed in mouse monocyte/OC precursors (OCPs) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) is secreted abundantly by OBs. Using in vitro time-lapse microscopy and intravital two-photon microscopy, we show that EBI2 enhances the development of large OCs by promoting OCP motility, thus facilitating cell-cell interactions and fusion in vitro and in vivo. EBI2 is also necessary and sufficient for guiding OCPs toward bone surfaces. Interestingly, OCPs also secrete 7α,25-OHC, which promotes autocrine EBI2 signaling and reduces OCP migration toward bone surfaces in vivo. Defective EBI2 signaling led to increased bone mass in male mice and protected female mice from age- and estrogen deficiency-induced osteoporosis. This study identifies a novel pathway involved in OCP homing to the bone surface that may have significant therapeutic potential.


Subject(s)
Bone Density/drug effects , Cell Movement/drug effects , Hydroxycholesterols/pharmacology , Osteoclasts/drug effects , Receptors, G-Protein-Coupled/physiology , Stem Cells/drug effects , Animals , Bone and Bones/cytology , Cell Differentiation/drug effects , Female , Homeostasis , Mice , Mice, Inbred C57BL , Osteoclasts/physiology , Signal Transduction , Stem Cells/physiology
7.
J Immunol ; 178(7): 4129-35, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17371968

ABSTRACT

Peroxisome proliferator-activated receptor (PPAR)gamma is a nuclear hormone receptor primarily characterized for its effect on insulin metabolism. PPARgamma ligands, used to treat human type 2 diabetes, also down-regulate most immune system cells including APCs and pathogenic T cells. These effects putatively underlie the efficacy of PPARgamma ligands in treating animal models of autoimmunity, leading to projections of therapeutic potential in human autoimmunity. However, the relationship between PPARgamma ligands and CD4+CD25+ regulatory T cells (Tregs) has not been examined. Specifically, no studies have examined the role of Tregs in mediating the in vivo immunoregulatory effects of PPARgamma ligands, and there have been no investigations of the use of PPARgamma ligands to treat autoimmunity in the absence of Tregs. We now characterize the novel relationship between ciglitazone, a thiazolidinedione class of PPARgamma ligand, and both murine natural Tregs (nTregs) and inducible Tregs (iTregs). In vitro, ciglitazone significantly enhances generation of iTregs in a PPARgamma-independent manner. Surprisingly, and contrary to the current paradigm, we find that, in a model of graft-vs-host disease, the immunotherapeutic effect of ciglitazone requires the presence of nTregs that express PPARgamma. Overall, our results indicate that, unlike its down-regulatory effect on other cells of the immune system, ciglitazone has an enhancing effect on both iTregs and nTregs, and this finding may have important implications for using PPARgamma ligands in treating human autoimmune disease.


Subject(s)
Graft vs Host Disease/drug therapy , PPAR gamma/drug effects , PPAR gamma/physiology , T-Lymphocytes, Regulatory/drug effects , Thiazolidinediones/pharmacology , Animals , CD4 Antigens/analysis , Disease Models, Animal , Interleukin-2 Receptor alpha Subunit/analysis , Ligands , Mice , Mice, Mutant Strains , PPAR gamma/genetics , T-Lymphocytes, Regulatory/immunology , Thiazolidinediones/therapeutic use
8.
Prostate ; 67(5): 536-46, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17221844

ABSTRACT

BACKGROUND: Prostate cancer promotes the development of T cell tolerance towards prostatic antigens, potentially limiting the efficacy of prostate cancer vaccines targeting these antigens. Here, we sought to determine the stage of disease progression when T cell tolerance develops, as well as the role of steady state dendritic cells (DC) and CD4(+)CD25(+) T regulatory cells (Tregs) in programming tolerance. METHODS: The response of naïve HA-specific CD4(+) T cells were analyzed following adoptive transfer into Pro-HA x TRAMP transgenic mice harboring variably-staged HA-expressing prostate tumors on two genetic backgrounds that display different patterns and kinetics of tumorigenesis. The role of DC and Tregs in programming HA-specific CD4 cell responses were assessed via depletion. RESULTS: HA-specific CD4 cells underwent non-immunogenic responses at all stages of tumorigenesis in both genetic backgrounds. These responses were completely dependent on DC, but not appreciably influenced by Tregs. CONCLUSIONS: These results suggest that tolerogenicity is an early and general property of prostate tumors.


Subject(s)
Antigens, Neoplasm/metabolism , Dendritic Cells/immunology , Prostatic Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Dendritic Cells/pathology , Histocytochemistry , Kinetics , Male , Mice , Mice, Transgenic , Neoplasms, Experimental , Organ Size , Prostatic Neoplasms/pathology , Receptors, Tumor Necrosis Factor, Member 25/metabolism , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...