Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 160: 274-296, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709531

ABSTRACT

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of (1) Continuous Learning, (2) Transfer and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.


Subject(s)
Education, Continuing , Machine Learning
2.
IEEE J Biomed Health Inform ; 24(3): 916-925, 2020 03.
Article in English | MEDLINE | ID: mdl-31107669

ABSTRACT

We consider the problem in precision health of grouping people into subpopulations based on their degree of vulnerability to a risk factor. These subpopulations cannot be discovered with traditional clustering techniques because their quality is evaluated with a supervised metric: The ease of modeling a response variable for observations within them. Instead, we apply the more appropriate supervised cadre model (SCM). We extend the SCM formalism so that it may be applied to multivariate regression and binary classification problems and develop a way to use conditional entropy to assess the confidence in the process by which a subject is assigned their cadre. Using the SCM, we generalize the environment-wide association study (EWAS) to be able to model heterogeneity in population risk. In our EWAS, we consider more than 200 environmental exposure factors and find their association with diastolic blood pressure, systolic blood pressure, and hypertension. This requires adapting the SCM to be applicable to data generated by a complex survey design. After correcting for false positives, we found 25 exposure variables that had a significant association with at least one of our response variables. Eight of these were significant for a discovered subpopulation but not for the overall population. Some of these associations have been identified by previous researchers, whereas others appear to be novel. We examine discovered subpopulations in detail, finding that they are interpretable and suggestive of further research questions.


Subject(s)
Computational Biology/methods , Hypertension/epidemiology , Models, Statistical , Supervised Machine Learning , Big Data , Environment , Humans , Knowledge Discovery , Nutrition Surveys , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...