Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38050128

ABSTRACT

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Subject(s)
Aniridia , Eye Abnormalities , Humans , PAX6 Transcription Factor/genetics , Aniridia/genetics , Mutation/genetics , Eye Abnormalities/genetics , Exons , Homeodomain Proteins/genetics , Eye Proteins/genetics , Pedigree
2.
Brain ; 146(6): 2285-2297, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36477332

ABSTRACT

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Subject(s)
Microcephaly , Animals , Humans , Microcephaly/genetics , Claudin-5/genetics , Claudin-5/metabolism , Zebrafish/metabolism , Blood-Brain Barrier/metabolism , Seizures/genetics , Syndrome
3.
Hum Mutat ; 43(12): 1844-1851, 2022 12.
Article in English | MEDLINE | ID: mdl-35904126

ABSTRACT

TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.


Subject(s)
Neurodevelopmental Disorders , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Child , Humans , Developmental Disabilities/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism
4.
Am J Med Genet A ; 185(11): 3446-3458, 2021 11.
Article in English | MEDLINE | ID: mdl-34436830

ABSTRACT

The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution occurring with age. We report familial ASXL3 pathogenic variants, characterize the phenotype in mildly affected individuals and discuss nonpenetrance. We also discuss the role of missense variants in ASXL3. We delineate a variable but consistent phenotype. The most characteristic features are neurodevelopmental delay with consistently limited speech, significant neuro-behavioral issues, hypotonia, and feeding difficulties. Distinctive features include downslanting palpebral fissures, hypertelorism, tubular nose with a prominent nasal bridge, and low-hanging columella. The presented data will inform clinical management of individuals with ASXL3-related syndrome and improve interpretation of new ASXL3 sequence variants.


Subject(s)
Developmental Disabilities/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/epidemiology , Developmental Disabilities/physiopathology , Female , Genetic Variation/genetics , Humans , Hypertelorism/genetics , Hypertelorism/physiopathology , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Muscle Hypotonia/genetics , Muscle Hypotonia/physiopathology , Mutation/genetics , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
5.
Eur J Hum Genet ; 29(4): 625-636, 2021 04.
Article in English | MEDLINE | ID: mdl-33437032

ABSTRACT

Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.


Subject(s)
Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Phenotype , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Adolescent , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Mutation , Syndrome
6.
Brain ; 143(8): 2380-2387, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32658972

ABSTRACT

The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.


Subject(s)
Bilateral Vestibulopathy/genetics , Hearing Loss, Sensorineural/genetics , Neurodevelopmental Disorders/genetics , Solute Carrier Family 12, Member 2/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Young Adult
7.
Neurol Genet ; 6(4): e448, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637631

ABSTRACT

OBJECTIVE: To report a series of patients with cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma (CBL) gene and examine the functional role of the identified mutant Cbl protein. We hypothesized that mutated Cbl fails to act as a negative regulator of the RAS-mitogen-activated protein kinases (MAPK) signaling pathway, resulting in enhanced vascular fibroblast proliferation and migration and enhanced angiogenesis and collateral vessel formation. METHODS: We performed whole-exome sequencing in 11 separate families referred to Great Ormond Street Hospital, London, with suspected genetic cause for clinical presentation with severe progressive cerebral arteriopathy. RESULTS: We identified heterozygous variants in the CBL gene in 5 affected cases from 3 families. We show that impaired CBL-mediated degradation of cell surface tyrosine kinase receptors and dysregulated intracellular signaling through the RAS-MAPK pathway contribute to the pathogenesis of the observed arteriopathy. Mutated CBL failed to control the angiogenic signal relay of vascular endothelial growth factor receptor 2, leading to prolonged tyrosine kinase signaling, thus driving angiogenesis and collateral vessel formation. Mutant Cbl promoted myofibroblast migration and proliferation contributing to vascular occlusive disease; these effects were abrogated following treatment with a RAF-RAS-MAPK pathway inhibitor. CONCLUSIONS: We provide a possible mechanism for the arteriopathy associated with heterozygous CBL variants. Identification of the key role for the RAS-MAPK pathway in CBL-mediated cerebral arteriopathy could facilitate identification of novel or repurposed druggable targets for treating these patients and may also provide therapeutic clues for other cerebral arteriopathies.

8.
Am J Med Genet A ; 182(7): 1637-1654, 2020 07.
Article in English | MEDLINE | ID: mdl-32319732

ABSTRACT

With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Neurodevelopmental Disorders/etiology , Adolescent , Brain/diagnostic imaging , Child , Child, Preschool , Craniofacial Abnormalities/etiology , Female , Haploinsufficiency/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/etiology , Neurodevelopmental Disorders/genetics , Pregnancy , Seizures/genetics , Syndrome
9.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32196547

ABSTRACT

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Subject(s)
Catenins/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Craniofacial Abnormalities/genetics , Ectropion/genetics , Heart Defects, Congenital/genetics , Tooth Abnormalities/genetics , Adolescent , Adult , Animals , Anodontia/diagnostic imaging , Anodontia/genetics , Anodontia/physiopathology , Child , Child, Preschool , Cleft Lip/diagnostic imaging , Cleft Lip/physiopathology , Cleft Palate/diagnostic imaging , Cleft Palate/physiopathology , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/physiopathology , Disease Models, Animal , Ectropion/diagnostic imaging , Ectropion/physiopathology , Female , Genetic Predisposition to Disease , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Humans , Male , Mice , Tooth Abnormalities/diagnostic imaging , Tooth Abnormalities/physiopathology , Xenopus , Young Adult , Delta Catenin
10.
Am J Med Genet A ; 179(9): 1884-1894, 2019 09.
Article in English | MEDLINE | ID: mdl-31313512

ABSTRACT

Brachyolmia is a skeletal dysplasia characterized by short spine-short stature, platyspondyly, and minor long bone abnormalities. We describe 18 patients, from different ethnic backgrounds and ages ranging from infancy to 19 years, with the autosomal recessive form, associated with PAPSS2. The main clinical features include disproportionate short stature with short spine associated with variable symptoms of pain, stiffness, and spinal deformity. Eight patients presented prenatally with short femora, whereas later in childhood their short-spine phenotype emerged. We observed the same pattern of changing skeletal proportion in other patients. The radiological findings included platyspondyly, irregular end plates of the elongated vertebral bodies, narrow disc spaces and short over-faced pedicles. In the limbs, there was mild shortening of femoral necks and tibiae in some patients, whereas others had minor epiphyseal or metaphyseal changes. In all patients, exome and Sanger sequencing identified homozygous or compound heterozygous PAPSS2 variants, including c.809G>A, common to white European patients. Bi-parental inheritance was established where possible. Low serum DHEAS, but not overt androgen excess was identified. Our study indicates that autosomal recessive brachyolmia occurs across continents and may be under-recognized in infancy. This condition should be considered in the differential diagnosis of short femora presenting in the second trimester.


Subject(s)
Dwarfism/genetics , Multienzyme Complexes/genetics , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Sulfate Adenylyltransferase/genetics , Adolescent , Adult , Child , Child, Preschool , Dwarfism/diagnostic imaging , Dwarfism/physiopathology , Female , Genes, Recessive/genetics , Genetic Predisposition to Disease , Homozygote , Humans , Infant , Infant, Newborn , Male , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal Abnormalities/physiopathology , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/physiopathology , Pedigree , Radiography , Spine/diagnostic imaging , Spine/physiopathology , Exome Sequencing , Young Adult
11.
Genome Res ; 29(7): 1057-1066, 2019 07.
Article in English | MEDLINE | ID: mdl-31160375

ABSTRACT

Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders.


Subject(s)
Aging/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , Growth Disorders/genetics , Mutation , Abnormalities, Multiple/genetics , Adolescent , Adult , Amish/genetics , Child , DNA Methylation , DNA Methyltransferase 3A , Face/abnormalities , Hematologic Diseases/genetics , Humans , Intellectual Disability/genetics , Leukemia, Myeloid, Acute/genetics , Male , Methyltransferases , Morphogenesis/genetics , Syndrome , Vestibular Diseases/genetics , Young Adult
12.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006512

ABSTRACT

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Subject(s)
DNA Polymerase I/genetics , DNA Primase/genetics , Genetic Diseases, X-Linked/etiology , Growth Disorders/etiology , Hypogonadism/etiology , Intellectual Disability/etiology , Microcephaly/etiology , Mutation , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, X-Linked/pathology , Genotype , Growth Disorders/pathology , Humans , Hypogonadism/pathology , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Middle Aged , Pedigree , Exome Sequencing
13.
BMJ Open Ophthalmol ; 4(1): e000234, 2019.
Article in English | MEDLINE | ID: mdl-30997404

ABSTRACT

OBJECTIVE: The ubiquitin-proteasome system pathway has been recognised as a crucial cellular mechanism for the proper function of photoreceptor cells. In particular, ubiquitin ligases (E3s) recognise and ubiquitinate specific proteins for degradation. The KLHL7 protein (a BTB-Kelch protein) has been found to play an important role in this process. There have been several reports that heterozygous mutations in the KLHL7 gene in adults are responsible for a rare cause of late-onset autosomal dominant retinitis pigmentosa with preservation of central vision and homozygous mutations in two young children, with Crisponi syndrome (CS)/cold-induced sweating syndrome type 1, result in a recessive form of early-onset peripheral retinal dystrophy type changes. The majority of children do not survive through to adulthood. The objective of this study is to report the visual symptoms and signs of two young adults clinically diagnosed with overlapping BOS/Cisproni syndrome, expanding the phenotypic presentation of KLHL7 gene mutations. METHODS AND ANALYSIS: This is a case report of the ophthalmic findings of two siblings with biallelic KLHL7 gene mutations. Siblings born to a non-consanguineous family and diagnosed with the overlapping clinical phenotype of Bohring-Opitz and and confirmed biallelic KLHL 7 gene mutation by whole exome sequencing were identified. Ophthlamic history and fundal examination was performed and analysed. RESULTS: Both patients had similar retinal findings. The fundus shows confluent hypopigmented/pale yellow lesions in the mid-periphery. The optic disc appears to be pale with a ring of atrophy and vessels appear attenuated. The macular of the younger patient shows a depigmented area around the fovea giving a bull's-eye appearance while the older sibling shows a fibrotic ring around the fovea suggesting a more advanced pathology. CONCLUSION: This paper expands the retinal phenotype to include a distinctive maculopathy in a recently described homozygous mutation in the KLHL7 gene in two young adults presenting with features that overlap the Bohring-Opitz syndrome and CS.

14.
Clin Genet ; 95(6): 693-703, 2019 06.
Article in English | MEDLINE | ID: mdl-30859559

ABSTRACT

Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.


Subject(s)
Exome , Noonan Syndrome/genetics , Transcription Factors/genetics , Adolescent , Alleles , Child , Child, Preschool , Cohort Studies , Female , Gene Ontology , Genes, Dominant , Genes, Recessive , Heterozygote , Humans , Infant , Male , Mutation , Noonan Syndrome/physiopathology , Pedigree , Phenotype
15.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905399

ABSTRACT

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Subject(s)
Cyclin-Dependent Kinase 8/genetics , Developmental Disabilities/genetics , Mediator Complex/genetics , Mutation, Missense , Brain/abnormalities , Child , Child, Preschool , Cyclin C/genetics , Cyclin-Dependent Kinases/genetics , Exome , Female , Heart Defects, Congenital/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Mutation , Phenotype , Phosphorylation , Syndrome
16.
Lancet ; 393(10173): 747-757, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30712880

ABSTRACT

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Subject(s)
Abnormal Karyotype/statistics & numerical data , Congenital Abnormalities/genetics , Exome Sequencing/statistics & numerical data , Fetal Development/genetics , Fetus/abnormalities , Abnormal Karyotype/embryology , Abortion, Eugenic/statistics & numerical data , Abortion, Spontaneous/epidemiology , Congenital Abnormalities/diagnosis , Congenital Abnormalities/epidemiology , DNA Copy Number Variations/genetics , Female , Fetus/diagnostic imaging , Humans , Infant, Newborn , Live Birth/epidemiology , Male , Nuchal Translucency Measurement , Parents , Perinatal Death/etiology , Pregnancy , Prospective Studies , Stillbirth/epidemiology , Exome Sequencing/methods
17.
Eur J Med Genet ; 62(1): 27-34, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29698805

ABSTRACT

In the last 3 years de novo sequence variants in the ARID2 (AT-rich interaction domain 2) gene, a subunit of the SWI/SNF complex, have been linked to intellectual disabilities in 3 case reports including one which describes frameshift mutations in ARID2 in 2 patients with features resembling Coffin-Siris syndrome. Coffin-Siris syndrome (CSS) is a rare congenital syndrome characterized by intellectual deficit, coarse facial features and hypoplastic or absent fifth fingernails and/or toenails among other features. Mutations in a number of different genes encoding SWI/SNF chromatin remodelling complex proteins have been described but the underlying molecular cause remains unknown in approximately 40% of patients with CSS. Here we describe 7 unrelated individuals, 2 with deletions of the ARID2 region and 5 with de novo truncating mutations in the ARID2 gene. Similarities to CSS are evident. Although hypertrichosis and hypoplasia of the fifth finger nail and distal phalanx do not appear to be common in these patients, toenail hypoplasia and the presence of Wormian bones might support the involvement of ARID2.


Subject(s)
Abnormalities, Multiple/genetics , Face/abnormalities , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Micrognathism/genetics , Neck/abnormalities , Phenotype , Transcription Factors/genetics , Abnormalities, Multiple/pathology , Adolescent , Child , Child, Preschool , Face/pathology , Female , Hand Deformities, Congenital/pathology , Humans , Intellectual Disability/pathology , Male , Micrognathism/pathology , Neck/pathology
18.
Curr Opin Hematol ; 26(1): 6-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30451719

ABSTRACT

PURPOSE OF REVIEW: Barth syndrome (BTHS) is an X-linked disease characterized by defective remodeling of phospholipid side chains in mitochondrial membranes. Major features include neutropenia, dilated cardiomyopathy, motor delay and proximal myopathy, feeding problems, and constitutional growth delay. We conducted this review of neutropenia in BTHS to aid in the diagnosis of this disease, and to improve understanding of both the consequences of neutropenia and the benefits of treatment with granulocyte colony-stimulating factor (G-CSF). RECENT FINDINGS: In 88 patients with BTHS, neutropenia, that is, at least one count below 1.5 × 10/l, was detected in 74 (84%) and 44% had severe chronic neutropenia, with multiple counts below 0.5 × 10/l. The pattern of neutropenia varied between intermittent and unpredictable, chronic and severe, or cyclical with mathematically regular oscillations. Monocytosis, that is, monocytes more than 1.0 × 10/l, was observed at least once in 64 of 85 (75%) patients. G-CSF was administered to 39 of 88 patients (44%). Weekly average G-CSF doses ranged from 0.12 to 10.92 µg/kg/day (mean 1.16 µg/kg/day, median 1.16 µg/kg/day). Antibiotic prophylaxis was additionally employed in 21 of 26 neutropenic patients. Pretreatment bone marrow evaluations predominantly showed reduced myeloid maturation which normalized on G-CSF therapy in seven of 13 examined. Consistent clinical improvement, with reduced signs and symptoms of infections, was observed in response to prophylactic G-CSF ±â€Šprophylactic antibiotics. However, despite G-CSF and antibiotics, one adult patient died with multiple infections related to indwelling medical devices and gastrostomy site infection after 15.5 years on G-CSF and a pediatric patient required gastrostomy removal for recurrent abdominal wall cellulitis. SUMMARY: BTHS should be considered in any men with neutropenia accompanied by any of the characteristic features of this syndrome. Prophylaxis with G-CSF ±â€Šantibiotics prevents serious bacterial infections in the more severe neutropenic patients although infections remain a threat even in patients who are very compliant with therapy, especially in those with indwelling devices.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Barth Syndrome/drug therapy , Granulocyte Colony-Stimulating Factor/administration & dosage , Barth Syndrome/blood , Barth Syndrome/mortality , Barth Syndrome/pathology , Bone Marrow/metabolism , Bone Marrow/pathology , Humans , Leukocyte Count , Male , Risk Factors
19.
Wellcome Open Res ; 3: 46, 2018.
Article in English | MEDLINE | ID: mdl-29900417

ABSTRACT

Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as the DNMT3A-overgrowth syndrome, is an overgrowth intellectual disability syndrome first described in 2014 with a report of 13 individuals with constitutive heterozygous DNMT3A variants. Here we have undertaken a detailed clinical study of 55 individuals with de novoDNMT3A variants, including the 13 previously reported individuals. An intellectual disability and overgrowth were reported in >80% of individuals with TBRS and were designated major clinical associations. Additional frequent clinical associations (reported in 20-80% individuals) included an evolving facial appearance with low-set, heavy, horizontal eyebrows and prominent upper central incisors; joint hypermobility (74%); obesity (weight ³2SD, 67%); hypotonia (54%); behavioural/psychiatric issues (most frequently autistic spectrum disorder, 51%); kyphoscoliosis (33%) and afebrile seizures (22%). One individual was diagnosed with acute myeloid leukaemia in teenage years. Based upon the results from this study, we present our current management for individuals with TBRS.

20.
Eur J Hum Genet ; 26(9): 1306-1311, 2018 09.
Article in English | MEDLINE | ID: mdl-29907757

ABSTRACT

Trio based whole exome sequencing via the Deciphering Developmental Disorders (DDD) study has identified three individuals with de novo frameshift variants in the Suppressor of Variegation, Enhancer of Zeste, and Trithorax (SET) gene. Variants in the SET gene have not previously been recognised to be associated with human developmental disorders. Here we report detailed phenotypic information and propose that SET is a new Intellectual Disability/Developmental Delay (ID/DD) gene.


Subject(s)
Developmental Disabilities/genetics , Histone Chaperones/genetics , Intellectual Disability/genetics , Phenotype , Transcription Factors/genetics , Adolescent , Child , DNA-Binding Proteins , Developmental Disabilities/pathology , Female , Frameshift Mutation , Humans , Intellectual Disability/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...