Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Acad Pediatr ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609014

ABSTRACT

PROBLEM: Workplace mistreatment is a contributor to resident burnout; understanding and intervening against mistreatment is one key tool in mitigating burnout. While Accreditation Council for Graduate Medical Education (ACGME) survey data alerts programs to general mistreatment trends, those data are not detailed enough to inform local interventions. Our team designed and implemented a Challenging Interactions Reporting Tool (CIRT) to characterize the experiences of our trainees at a granular level and to inform targeted interventions for improvement. APPROACH: Our CIRT was offered to 158 residents in August 2020 via REDCap. Residents submit electronic reports that are reviewed weekly by program leaders who develop action plans for each report. Reporters can identify themselves or can choose to remain anonymous. When "hot spots" for mistreatment are identified in our hospital, we implement a targeted systems-level intervention. OUTCOMES: Residents filed 275 reports between August 2020 and December 2022. Reports represented all training environments and involved all interprofessional members of clinical teams. Residents reported awareness of, use of, and satisfaction with the tool. NEXT STEPS: Our program created the CIRT as a tool to inform local interventions for improving the safety of our clinical learning environment. We continue to disseminate our tool across our hospital's GME programs and are now measuring the impact of our interventions.

2.
J Immunol ; 212(2): 258-270, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38079221

ABSTRACT

Oxidants participate in lymphocyte activation and function. We previously demonstrated that eliminating the activity of NADPH oxidase 2 (NOX2) significantly impaired the effectiveness of autoreactive CD8+ CTLs. However, the molecular mechanisms impacting CD8+ T cell function remain unknown. In the present study, we examined the role of NOX2 in both NOD mouse and human CD8+ T cell function. Genetic ablation or chemical inhibition of NOX2 in CD8+ T cells significantly suppressed activation-induced expression of the transcription factor T-bet, the master transcription factor of the Tc1 cell lineage, and T-bet target effector genes such as IFN-γ and granzyme B. Inhibition of NOX2 in both human and mouse CD8+ T cells prevented target cell lysis. We identified that superoxide generated by NOX2 must be converted into hydrogen peroxide to transduce the redox signal in CD8+ T cells. Furthermore, we show that NOX2-generated oxidants deactivate the tumor suppressor complex leading to activation of RheB and subsequently mTOR complex 1. These results indicate that NOX2 plays a nonredundant role in TCR-mediated CD8+ T cell effector function.


Subject(s)
CD8-Positive T-Lymphocytes , NADPH Oxidase 2 , Reactive Oxygen Species , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Granzymes/metabolism , Hydrogen Peroxide/metabolism , Inflammation/immunology , Interferon-gamma/metabolism , Lymphocyte Activation , Mice, Inbred NOD , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , Male , Female , Young Adult
3.
Front Endocrinol (Lausanne) ; 12: 737276, 2021.
Article in English | MEDLINE | ID: mdl-34858326

ABSTRACT

Type 1 diabetes (T1D) is a disease that arises due to complex immunogenetic mechanisms. Key cell-cell interactions involved in the pathogenesis of T1D are activation of autoreactive T cells by dendritic cells (DC), migration of T cells across endothelial cells (EC) lining capillary walls into the islets of Langerhans, interaction of T cells with macrophages in the islets, and killing of ß-cells by autoreactive CD8+ T cells. Overall, pathogenic cell-cell interactions are likely regulated by the individual's collection of genetic T1D-risk variants. To accurately model the role of genetics, it is essential to build systems to interrogate single candidate genes in isolation during the interactions of cells that are essential for disease development. However, obtaining single-donor matched cells relevant to T1D is a challenge. Sourcing these genetic variants from human induced pluripotent stem cells (iPSC) avoids this limitation. Herein, we have differentiated iPSC from one donor into DC, macrophages, EC, and ß-cells. Additionally, we also engineered T cell avatars from the same donor to provide an in vitro platform to study genetic influences on these critical cellular interactions. This proof of concept demonstrates the ability to derive an isogenic system from a single donor to study these relevant cell-cell interactions. Our system constitutes an interdisciplinary approach with a controlled environment that provides a proof-of-concept for future studies to determine the role of disease alleles (e.g. IFIH1, PTPN22, SH2B3, TYK2) in regulating cell-cell interactions and cell-specific contributions to the pathogenesis of T1D.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , Diabetes Mellitus, Type 1/pathology , Induced Pluripotent Stem Cells/pathology , Cell Differentiation/physiology , Humans , Insulin-Secreting Cells/pathology , Islets of Langerhans/pathology
4.
J Autoimmun ; 108: 102417, 2020 03.
Article in English | MEDLINE | ID: mdl-32035746

ABSTRACT

IL-12 and IL-18 synergize to promote TH1 responses and have been implicated as accelerators of autoimmune pathogenesis in type 1 diabetes (T1D). We investigated the influence of these cytokines on immune cells involved in human T1D progression: natural killer (NK) cells, regulatory T cells (Tregs), and cytotoxic T lymphocytes (CTL). NK cells from T1D patients exhibited higher surface CD226 versus controls and lower CD25 compared to first-degree relatives and controls. Changes in NK cell phenotype towards terminal differentiation were associated with cytomegalovirus (CMV) seropositivity, while possession of IL18RAP, IFIH1, and IL2RA T1D-risk variants impacted NK cell activation as evaluated by immuno-expression quantitative trait loci (eQTL) analyses. IL-12 and IL-18 stimulated NK cells from healthy donors exhibited enhanced specific killing of myelogenous K562 target cells. Moreover, activated NK cells increased expression of NKG2A, NKG2D, CD226, TIGIT and CD25, which enabled competition for IL-2 upon co-culture with Tregs, resulting in Treg downregulation of FOXP3, production of IFNγ, and loss of suppressive function. We generated islet-autoreactive CTL "avatars", which upon exposure to IL-12 and IL-18, upregulated IFNγ and Granzyme-B leading to increased lymphocytotoxicity of a human ß-cell line in vitro. These results support a model for T1D pathogenesis wherein IL-12 and IL-18 synergistically enhance CTL and NK cell cytotoxic activity and disrupt immunoregulation by Tregs.


Subject(s)
Immunity, Innate , Inflammation/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adolescent , Adult , Biomarkers , Cells, Cultured , Child , Cytokines/metabolism , Cytotoxicity, Immunologic , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Disease Susceptibility , Female , Humans , Immunophenotyping , Inflammation/metabolism , Inflammation/pathology , Lymphocyte Count , Male , Middle Aged , Models, Biological , Phenotype , Quantitative Trait Loci , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Young Adult
5.
Curr Diab Rep ; 18(10): 90, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30168021

ABSTRACT

PURPOSE OF REVIEW: The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving ß cells in patients with or at risk for T1D. RECENT FINDINGS: Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Autoimmunity , Biomarkers/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Humans , Immunotherapy , Primary Prevention , T-Lymphocytes/immunology
6.
Front Immunol ; 8: 1313, 2017.
Article in English | MEDLINE | ID: mdl-29123516

ABSTRACT

The ability to alter antigen specificity by T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene transfer has facilitated personalized cellular immune therapies in cancer. Inversely, this approach can be harnessed in autoimmune settings to attenuate inflammation by redirecting the specificity of regulatory T cells (Tregs). Herein, we demonstrate efficient protocols for lentiviral gene transfer of TCRs that recognize type 1 diabetes-related autoantigens with the goal of tissue-targeted induction of antigen-specific tolerance to halt ß-cell destruction. We generated human Tregs expressing a high-affinity GAD555-567-reactive TCR (clone R164), as well as the lower affinity clone 4.13 specific for the same peptide. We demonstrated that de novo Treg avatars potently suppress antigen-specific and bystander responder T-cell (Tresp) proliferation in vitro in a process that requires Treg activation (P < 0.001 versus unactivated Tregs). When Tresp were also glutamic acid decarboxylase (GAD)-reactive, the high-affinity R164 Tregs exhibited increased suppression (P < 0.01) with lower Tresp-division index (P < 0.01) than the lower affinity 4.13 Tregs. These data demonstrate the feasibility of rapid expansion of antigen-specific Tregs for applications in attenuating ß-cell autoimmunity and emphasize further opportunities for engineering cellular specificities, affinities, and phenotypes to tailor Treg activity in adoptive cell therapies for the treatment of type 1 diabetes.

7.
Article in English | MEDLINE | ID: mdl-28959234

ABSTRACT

A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (ß cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/ß is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic ß cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.

8.
Diabetes ; 66(12): 3061-3071, 2017 12.
Article in English | MEDLINE | ID: mdl-28877912

ABSTRACT

Events defining the progression to human type 1 diabetes (T1D) have remained elusive owing to the complex interaction between genetics, the immune system, and the environment. Type 1 interferons (T1-IFN) are known to be a constituent of the autoinflammatory milieu within the pancreas of patients with T1D. However, the capacity of IFNα/ß to modulate human activated autoreactive CD8+ T-cell (cytotoxic T lymphocyte) responses within the islets of patients with T1D has not been investigated. Here, we engineer human ß-cell-specific cytotoxic T lymphocytes and demonstrate that T1-IFN augments cytotoxicity by inducing rapid phosphorylation of STAT4, resulting in direct binding at the granzyme B promoter within 2 h of exposure. The current findings provide novel insights concerning the regulation of effector function by T1-IFN in human antigen-experienced CD8+ T cells and provide a mechanism by which the presence of T1-IFN potentiates diabetogenicity within the autoimmune islet.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/drug effects , Granzymes/physiology , Interferon Type I/pharmacology , STAT4 Transcription Factor/physiology , Adolescent , Adult , Child , Female , Granzymes/genetics , Humans , Male , Promoter Regions, Genetic , Young Adult
9.
Diabetes ; 66(3): 710-721, 2017 03.
Article in English | MEDLINE | ID: mdl-27920091

ABSTRACT

Type 1 diabetes development in the NOD mouse model is widely reported to be dependent on high-level production by autoreactive CD4+ and CD8+ T cells of interferon-γ (IFN-γ), generally considered a proinflammatory cytokine. However, IFN-γ can also participate in tolerance-induction pathways, indicating it is not solely proinflammatory. This study addresses how IFN-γ can suppress activation of diabetogenic CD8+ T cells. CD8+ T cells transgenically expressing the diabetogenic AI4 T-cell receptor adoptively transferred disease to otherwise unmanipulated NOD.IFN-γnull , but not standard NOD, mice. AI4 T cells only underwent vigorous intrasplenic proliferation in NOD.IFN-γnull recipients. Disease-protective IFN-γ could be derived from any lymphocyte source and suppressed diabetogenic CD8+ T-cell responses both directly and through an intermediary nonlymphoid cell population. Suppression was not dependent on regulatory T cells, but was associated with increased inhibitory STAT1 to STAT4 expression levels in pathogenic AI4 T cells. Importantly, IFN-γ exposure during activation reduced the cytotoxicity of human-origin type 1 diabetes-relevant autoreactive CD8+ T cells. Collectively, these results indicate that rather than marking the most proinflammatory lymphocytes in diabetes development, IFN-γ production could represent an attempted limitation of pathogenic CD8+ T-cell activation. Thus, great care should be taken when designing possible diabetic intervention approaches modulating IFN-γ production.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Interferon-gamma/immunology , Lymphocyte Activation/immunology , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred NOD , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Reverse Transcriptase Polymerase Chain Reaction , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Spleen/cytology , T-Lymphocytes, Regulatory/drug effects
10.
Cancer Res ; 77(3): 672-683, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27864347

ABSTRACT

Cancer cells exert mastery over the local tumor-associated stroma (TAS) to configure protective immunity within the tumor microenvironment. The immunomodulatory character of pancreatic lysates of patients with cancer differs from those with pancreatitis. In this study, we evaluated the cross-talk between pancreatic cancer and its TAS in primary human cell culture models. Upon exposure of TAS to pancreatic cancer cell-conditioned media, we documented robust secretion of IL6 and IL8. This TAS response was MyD88-dependent and sufficient to directly suppress both CD4+ and CD8+ T-cell proliferation, inducing Th17 polarization at the expense of Th1. We found that patients possessed a similar shift in circulating effector memory Th17:Th1 ratios compared with healthy controls. The TAS response also directly suppressed CD8+ T-cell-mediated cytotoxicity. Overall, our results demonstrate how TAS contributes to the production of an immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Res; 77(3); 672-83. ©2016 AACR.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid Differentiation Factor 88/immunology , Real-Time Polymerase Chain Reaction , Receptor Cross-Talk/physiology , Tumor Cells, Cultured
11.
Trends Endocrinol Metab ; 25(8): 378-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24958526

ABSTRACT

Replacement of insulin-producing cells is a promising therapy for the restoration of the beta cell mass that is destroyed in patients with type 1 diabetes (T1D). However, the use of large amounts of islets per transplant, coupled with the scarcity of donor tissue, diminishes its feasibility. Here we briefly discuss current progress in developing ideal functional beta cells as well as the rationale for developing renewable sources of insulin-producing cells that can be transplanted.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Insulin-Secreting Cells/transplantation , Islets of Langerhans Transplantation/methods , Cell Line , Humans , Insulin-Secreting Cells/cytology
12.
PLoS One ; 8(9): e75116, 2013.
Article in English | MEDLINE | ID: mdl-24040393

ABSTRACT

Individuals with the autosomal recessive skeletal disorder Progressive Pseudorheumatoid Dysplasia have loss-of-function mutations in WISP3, and aberrant WISP3 expression has been detected in tumors from patients with colon and breast cancer. In mice however, neither absence nor over-expression of WISP3 was found to cause a phenotype, and endogenous Wisp3 expression has been difficult to detect. To confirm that Wisp3 knockout mice have no phenotype and to identify potential sites of endogenous Wisp3 expression, we generated mice with a knockin allele (Wisp3 (GFP-Cre)) designed to express Green Fluorescent Protein (GFP) and Cre-recombinase instead of WISP3. Heterozygous and homozygous knockin mice were fertile and indistinguishable from their wild-type littermates, confirming that mice lacking Wisp3 have no phenotype. We could not detect GFP-expression from the knockin allele, but we could detect Cre-expression after crossing mice with the knockin allele to Cre-reporter mice; the double heterozygous offspring had evidence of Cre-mediated recombination in several tissues. The only tissue that had high levels of Cre-mediated recombination was the testis, where recombination in spermatocytes occurred by early prophase of meiosis I. As a consequence, males that were double heterozygous for a Wisp3 (GFP-Cre) and a floxed allele only contributed a recombined allele to their offspring. We detected no evidence of Cre-mediated recombination in the female ovary, although when double heterozygous females contributed the reporter allele to their offspring it had recombined ~7% of the time. Wisp3 (GFP-Cre) expression therefore occurs less frequently and most likely at a later stage of oocyte development in female mice compared to male mice. We conclude that although WISP3 is dispensable in mice, male mice with a Wisp3 (GFP-Cre) allele (Jackson Laboratory stock # 017685) will be useful for studying early prophase of meiosis I and for efficiently recombining floxed alleles that are passed to offspring.


Subject(s)
Alleles , CCN Intercellular Signaling Proteins/genetics , Gene Knock-In Techniques/methods , Integrases/metabolism , Prophase/genetics , Recombination, Genetic , Spermatocytes/cytology , Animals , Base Sequence , CCN Intercellular Signaling Proteins/biosynthesis , Exons/genetics , Female , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Humans , Male , Mice , Peptide Chain Initiation, Translational , Spermatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...