Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 833
Filter
1.
Article in English | MEDLINE | ID: mdl-38605684

ABSTRACT

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age =76.4, 56.5% women, 85.9% non-Hispanic white) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95%CI]) for the likelihood of greater multimorbidity (four levels: 0 conditions, N=332; 1 condition, N=299; 2 conditions, N=98; or 3+ conditions, N=35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex-I and -II linked carbohydrates (e.g., Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR=1.32[1.13,1.54]) and separately with diabetes mellitus (OR=1.62[1.26,2.09]), depressive symptoms (OR=1.45[1.04,2.00]) and possibly chronic kidney disease (OR=1.57[0.98,2.52]) but not significantly with other conditions (e.g., cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities was associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and is more strongly related to some conditions than others.

2.
Med Sci Sports Exerc ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38598351

ABSTRACT

PURPOSE: Cardiorespiratory fitness (CRF) measured by peak oxygen consumption (VO 2 peak) declines with aging and correlates with mortality and morbidity. Cardiopulmonary Exercise Testing (CPET) is the criterion method to assess CRF, but its feasibility, validity and reliability in older adults is unclear. Our objective was to design and implement a dependable, safe and reliable CPET protocol in older adults. METHODS: VO 2 peak was measured by CPET, performed using treadmill exercise in 875 adults ≥70 years in the Study of Muscle, Mobility and Aging (SOMMA). The protocol included a symptom-limited peak (maximal) exercise and two submaximal walking speeds. An adjudication process was in place to review tests for validity if they met any prespecified criteria [VO 2 peak < 12.0 ml/kg/min; maximum heart rate (HR) <100 bpm; respiratory exchange ratio (RER) <1.05 and a rating of perceived exertion <15]. A subset (N = 30) performed a repeat test to assess reproducibility. RESULTS: CPET was safe and well tolerated, with 95.8% of participants able to complete the VO 2 peak phase of the protocol. Only 56 (6.4%) participants had a risk alert and only two adverse events occurred: a fall and atrial fibrillation. Mean ± SD VO 2 peak was 20.2 ± 4.8 mL/kg/min, peak HR 142 ± 18 bpm, and peak RER 1.14 ± 0.09. Adjudication was indicated in 47 tests; 20 were evaluated as valid, 27 as invalid (18 data collection errors, 9 did not reach VO 2 peak). Reproducibility of VO 2 peak was high (intraclass correlation coefficient = 0.97). CONCLUSIONS: CPET was feasible, effective and safe for older adults, including many with multimorbidity or frailty. These data support a broader implementation of CPET to provide insight into the role of CRF and its underlying determinants of aging and age-related conditions.

3.
Aging Cell ; : e14118, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627910

ABSTRACT

Autophagy is essential for proteostasis, energetic balance, and cell defense and is a key pathway in aging. Identifying associations between autophagy gene expression patterns in skeletal muscle and physical performance outcomes would further our knowledge of mechanisms related with proteostasis and healthy aging. Muscle biopsies were obtained from participants in the Study of Muscle, Mobility, and Aging (SOMMA). For 575 participants, RNA was sequenced and expression of 281 genes related to autophagy regulation, mitophagy, and mTOR/upstream pathways was determined. Associations between gene expression and outcomes including mitochondrial respiration in muscle fiber bundles (MAX OXPHOS), physical performance (VO2 peak, 400 m walking speed, and leg power), and thigh muscle volume, were determined using negative binomial regression models. For autophagy, key transcriptional regulators including TFE3 and NFKB-related genes (RELA, RELB, and NFKB1) were negatively associated with outcomes. On the contrary, regulators of oxidative metabolism that also promote overall autophagy, mitophagy, and pexophagy (PPARGC1A, PPARA, and EPAS1) were positively associated with multiple outcomes. In line with this, several mitophagy, fusion, and fission-related genes (NIPSNAP2, DNM1L, and OPA1) were also positively associated with outcomes. For mTOR pathway and related genes, expression of WDR59 and WDR24, both subunits of GATOR2 complex (an indirect inhibitor of mTORC1), and PRKAG3, which is a regulatory subunit of AMPK, were negatively correlated with multiple outcomes. Our study identifies autophagy and selective autophagy such as mitophagy gene expression patterns in human skeletal muscle related to physical performance, muscle volume, and mitochondrial function in older persons which may lead to target identification to preserve mobility and independence.

4.
Aging Cell ; : e14136, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38440820

ABSTRACT

The identification of protein targets that exhibit anti-aging clinical potential could inform interventions to lengthen the human health span. Most previous proteomics research has been focused on chronological age instead of longevity. We leveraged two large population-based prospective cohorts with long follow-ups to evaluate the proteomic signature of longevity defined by survival to 90 years of age. Plasma proteomics was measured using a SOMAscan assay in 3067 participants from the Cardiovascular Health Study (discovery cohort) and 4690 participants from the Age Gene/Environment Susceptibility-Reykjavik Study (replication cohort). Logistic regression identified 211 significant proteins in the CHS cohort using a Bonferroni-adjusted threshold, of which 168 were available in the replication cohort and 105 were replicated (corrected p value <0.05). The most significant proteins were GDF-15 and N-terminal pro-BNP in both cohorts. A parsimonious protein-based prediction model was built using 33 proteins selected by LASSO with 10-fold cross-validation and validated using 27 available proteins in the validation cohort. This protein model outperformed a basic model using traditional factors (demographics, height, weight, and smoking) by improving the AUC from 0.658 to 0.748 in the discovery cohort and from 0.755 to 0.802 in the validation cohort. We also found that the associations of 169 out of 211 proteins were partially mediated by physical and/or cognitive function. These findings could contribute to the identification of biomarkers and pathways of aging and potential therapeutic targets to delay aging and age-related diseases.

5.
Article in English | MEDLINE | ID: mdl-38426788

ABSTRACT

BACKGROUND: Aging increases fracture risk through bone loss and microarchitecture deterioration due to an age-related imbalance in bone resorption and formation during bone remodelling. We examined the associations between levels of phosphate, calcium, and alkaline phosphatase, and fracture risk in initially-healthy older individuals. METHODS: A post-hoc analysis of the Aspirin in Reducing Events in the Elderly (ASPREE) trial recruited 16,703 Australian participants aged ≥70 years and 2,411 US participants aged ≥65 years. Analyses were conducted on ASPREE-Fracture substudy participants from Australia with serum calcium, phosphate, and alkaline phosphatase measurement. Fracture data were collected post-randomization. Cox regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CIs). Phosphate, calcium, and alkaline phosphatase were analysed in deciles (D1-D10), with deciles 4-7 (31-70%) as the reference category. Restricted cubic spline curves were used to identify nonlinear associations. RESULTS: Of the 9915 participants, 907 (9·2%) persons had incident fractures recorded over 3·9 (SD 1·4) years. In the fully adjusted model, males in the top decile (D10) of phosphate had 78% higher risk of incident fracture (HR 1·78, 95% CI 1·25-2·54). No such association was observed for females (HR 1·09, 95% CI 0·83-1·44). The population attributable fraction in men within the D10 phosphate category is 6·9%. CONCLUSION: This result confirms that, high-normal serum phosphate levels are associated with increased fracture risk in older men.

6.
Diabetes ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551899

ABSTRACT

Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial oxidative capacity on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes as well as determine their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n=159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles when compared to those without diabetes (n=717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Additional adjustments with BMI and co-morbidities further explained the group differences in walk speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes.

7.
Sci Adv ; 10(10): eadj6411, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446898

ABSTRACT

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.


Subject(s)
Muscle, Skeletal , Musculoskeletal Physiological Phenomena , Female , Humans , Aged , Male , Adenosine Triphosphate , Aging , Mitochondria
8.
Aging Cell ; : e14094, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332629

ABSTRACT

Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (R = 0.48) between a higher oxidation level of eight Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impairs muscle power and strength, walking speed, and cardiopulmonary fitness with aging.

9.
Article in English | MEDLINE | ID: mdl-38367212

ABSTRACT

BACKGROUND: How magnetic resonance (MR) derived thigh muscle volume and deuterated creatine dilution derived muscle mass (D3Cr muscle mass) differentially relate to strength, fitness, and other functions in older adults-and whether associations vary by sex-is not known. METHODS: Men (N = 345) and women (N = 482) aged ≥70 years from the Study of Muscle, Mobility, and Aging completed leg extension strength (1-repetition max) and cardiopulmonary exercise testing to assess fitness (VO2peak). Correlations and adjusted regression models stratified by sex were used to assess the association between muscle size measures, study outcomes, and sex interactions. RESULTS: D3Cr muscle mass and MR thigh muscle volume were correlated (men: r = 0.62, women: r = 0.51, p < .001). Each standard deviation (SD) decrement in D3Cr muscle mass was associated with lower 1-repetition max strength (-14 kg men, -4 kg women, p < .001 for both; p-interaction = .003) and lower VO2peak (-79 mL/min men, -30 mL/min women, p < .001 for both, p-interaction: .016). Each SD decrement in MR thigh muscle volume was also associated with lower strength (-32 kg men, -20 kg women, p < .001 for both; p-interaction = .139) and lower VO2peak (-217 mL/min men, -111 mL/min women, p < .001 for both, p-interaction = .010). There were associations, though less consistent, between muscle size or mass with physical performance and function; associations varied by sex. CONCLUSIONS: Less muscle-measured by either D3Cr muscle mass or MR thigh muscle volume-was associated with lower strength and fitness. Varied associations by sex and assessment method suggest consideration be given to which measurement to use in future studies.


Subject(s)
Muscle, Skeletal , Thigh , Male , Humans , Female , Aged , Muscle, Skeletal/physiology , Aging/physiology , Physical Functional Performance , Magnetic Resonance Spectroscopy , Muscle Strength/physiology
10.
Geroscience ; 46(3): 3419-3428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38315316

ABSTRACT

Biopsies of muscle and adipose tissue (AT) are useful tools to gain insights into the aging processes in these tissues. However, they are invasive procedures and their risk/benefit profile in older adults can be altered by sarcopenia, frailty, poor healing, and multimorbidity. Their success rates, safety, and tolerability in a geriatric population have not been reported in detail. Investigators in the Study of Muscle, Mobility, and Aging (SOMMA) performed biopsies of muscle and AT in older adults and prospectively collected data on biopsy success rates, safety, and tolerability. We report here the methods and outcomes of these two procedures. In total, 861 participants (aged 70-94) underwent percutaneous biopsies of the Vastus lateralis muscle with a Bergstrom needle. A subset (n = 241) also underwent percutaneous biopsies of the abdominal subcutaneous AT with the tumescent liposuction technique. Success rate was assessed by the percentage of biopsies yielding adequate specimens for analyses; tolerability by pain scores; and safety by frequency of adverse events. All data were prospectively collected. The overall muscle biopsy success rate was 97.1% and was modestly lower in women. The AT biopsy success rate was 95.9% and slightly lower in men. Minimal or no pain was reported in 68% of muscle biopsies and in 83% of AT biopsies. Adverse events occurred in 2.67% of muscle biopsies and 4.15% of AT biopsies. None was serious. In older adults, percutaneous muscle biopsies and abdominal subcutaneous AT biopsies have an excellent safety profile, often achieve adequate tissue yields for analyses, and are well tolerated.


Subject(s)
Muscle, Skeletal , Sarcopenia , Male , Humans , Aged , Female , Biopsy , Muscle, Skeletal/pathology , Aging , Sarcopenia/pathology , Adipose Tissue
11.
Article in English | MEDLINE | ID: mdl-38416053

ABSTRACT

BACKGROUND: The effects of aging on circadian patterns of behavior are insufficiently described. To address this, we characterized age-specific features of rest-activity rhythms (RAR) in community-dwelling older adults both overall, and in relation, to sociodemographic characteristics. METHODS: We examined cross-sectional associations between RAR and age, sex, race, education, multimorbidity burden, financial, work, martial, health, and smoking status using assessments of older adults with wrist-worn free-living actigraphy data (N = 820, age = 76.4 years, 58.2% women) participating in the Study of Muscle, Mobility, and Aging (SOMMA). RAR parameters were determined by mapping an extension to the traditional cosine curve to activity data. Functional principal component analysis determined variables accounting for variance. RESULTS: Age was associated with several metrics of dampened RAR; women had stronger and more robust RAR versus men (all p < .05). Total activity (56%) and time of activity (20%) accounted for most of the RAR variance. Compared to the latest decile of acrophase, those in the earliest decile had higher average amplitude (p < .001). Compared to the latest decile of acrophase, those in the earliest and midrange categories had more total activity (p = .02). Being in a married-like relationship and a more stable financial situation were associated with stronger rhythms; higher education was associated with less rhythm strength (all p < .05). CONCLUSIONS: Older age was associated with dampened circadian behavior; behaviors were sexually dimorphic. Some sociodemographic characteristics were associated with circadian behavior. We identified a behavioral phenotype characterized by early time of day of peak activity, high rhythmic amplitude, and more total activity.


Subject(s)
Circadian Rhythm , Rest , Male , Humans , Female , Aged , Cross-Sectional Studies , Rest/physiology , Circadian Rhythm/physiology , Aging/physiology , Actigraphy , Muscles , Sleep/physiology
12.
J Sport Health Sci ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38341136

ABSTRACT

BACKGROUND: Skeletal muscle energetics decline with age, and physical activity (PA) has been shown to offset these declines in older adults. Yet, many studies reporting these effects were based on self-reported PA or structured exercise interventions. Therefore, we examined the associations of accelerometry-measured and self-reported PA and sedentary behavior (SB) with skeletal muscle energetics and explored the extent to which PA and sedentary behavior would attenuate the associations of age with muscle energetics. METHODS: As part of the Study of Muscle, Mobility and Aging, enrolled older adults (n = 879), 810 (age = 76 ± 5 years old, mean ± SD; 58% women) had maximal muscle oxidative capacity measured ex vivo via high-resolution respirometry of permeabilized myofibers (maximal oxidative phosphorylation (maxOXPHOS)) and in vivo by 31phosphorus magnetic resonance spectroscopy (maximal adenosine triphosphate (ATPmax)). Accelerometry-measured sedentary behavior, light activity, and moderate-to-vigorous PA (MVPA) were assessed using a wrist-worn ActiGraph GT9X over 7 days. Self-reported sedentary behavior, MVPA, and all PA were assessed with the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire. Linear regression models with progressive covariate adjustments evaluated the associations of sedentary behavior and PA with muscle energetics, as well as the attenuation of the age/muscle energetics association by MVPA and sedentary behavior. As a sensitivity analysis, we also examined activPAL-measured daily step count and time spent in sedentary behavior and their associations with muscle energetics. RESULTS: Every 30 min/day more of ActiGraph-measured MVPA was associated with 0.65 pmol/(s × mg) higher maxOXPHOS and 0.012 mM/s higher ATPmax after adjusting for age, site/technician, and sex (p < 0.05). Light activity was not associated with maxOXPHOS or ATPmax. Meanwhile, every 30 min/day spent in ActiGraph-measured sedentary behavior was associated with 0.39 pmol/s × mg lower maxOXPHOS and 0.006 mM/s lower ATPmax (p < 0.05). Only associations with ATPmax held after further adjusting for socioeconomic status, body mass index, lifestyle factors, and multimorbidity. CHAMPS MVPA and all PA yielded similar associations with maxOXPHOS and ATPmax (p < 0.05), but sedentary behavior did not. Higher activPAL step count was associated with higher maxOXHPOS and ATPmax (p < 0.05), but time spent in sedentary behavior was not. Additionally, age was significantly associated with muscle energetics for men only (p < 0.05); adjusting for time spent in ActiGraph-measured MVPA attenuated the age association with ATPmax by 58% in men. CONCLUSION: More time spent in accelerometry-measured or self-reported daily PA, especially MVPA, was associated with higher skeletal muscle energetics. Interventions aimed specifically at increasing higher intensity activity might offer potential therapeutic interventions to slow age-related decline in muscle energetics. Our work also emphasizes the importance of taking PA into consideration when evaluating associations related to skeletal muscle energetics.

13.
Article in English | MEDLINE | ID: mdl-38206375

ABSTRACT

BACKGROUND: Falls in the older population are a major public health concern. While many physiological and environmental factors have been associated with fall risk, muscle mitochondrial energetics has not yet been investigated. METHODS: In this analysis, 835 Study of Muscle, Mobility and Aging (SOMMA) participants aged 70-94 were surveyed for number of falls (total), recurrent falls (2+), and fall-related injuries over the past 12 months at baseline and again after 1 year. Skeletal muscle energetics were assessed at baseline in vivo using 31P Magnetic Resonance Spectroscopy for the maximal rate of adenosine triphosphate recovery (ATPmax) after an acute bout of exercise, and ex vivo by High-Resolution Respirometry for the maximal rate of complex I and II supported oxygen consumption (MaxOXPHOS) in permeabilized muscle fibers from the vastus lateralis. RESULTS: At least 1 fall was reported in 28.7% of SOMMA participants in the first year of the study, with 12% of older adults reporting recurrent falls (2+). Individuals who experienced recurrent falls had a slower 400-m walk gait speed (1.0 ± 0.2 vs 1.1 ± 0.2, p < .001), reported fewer alcoholic drinks per week in the past year (2.4 ± 4.3 vs 2.8 ± 4.4, p = .054), and took a significantly greater number of medication in the 30 days before their baseline visit (5.6 ± 4.4 vs 4.2 ± 3.4, p < .05). A history of falls was reported in 63% of individuals who experienced recurrent falls in the first year of the study compared to 22.8% who experienced 1 or fewer falls. MaxOXPHOS was significantly lower in those who reported recurrent falls (p = .008) compared to those with 1 or fewer falls, but there was no significant difference in ATPmax (p = .369). Neither muscle energetics measure was significantly associated with total number of falls or injurious falls, but recurrent falls were significantly higher with lower MaxOXPHOS (risk ratio = 1.33, 95% confidence interval = 1.02-1.73, p = .033). However, covariates accounted for the increased risk. CONCLUSIONS: Mitochondrial energetics were largely unrelated to fall risk in older adults when accounting for variables, suggesting that the complex etiology of falls may not be related to a single "hallmark of aging" biological pathway.


Subject(s)
Aging , Muscle, Skeletal , Humans , Aged , Muscle, Skeletal/metabolism , Exercise , Walking
14.
J Am Geriatr Soc ; 72(4): 1035-1047, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38243364

ABSTRACT

BACKGROUND: Walking slows with aging often leading to mobility disability. Mitochondrial energetics has been found to be associated with gait speed over short distances. Additionally, walking is a complex activity but few clinical factors that may be associated with walk time have been studied. METHODS: We examined 879 participants ≥70 years and measured the time to walk 400 m. We tested the hypothesis that decreased mitochondrial energetics by respirometry in muscle biopsies and magnetic resonance spectroscopy in the thigh and is associated with longer time to walk 400 m. We also used cardiopulmonary exercise testing to assess the energetic costs of walking: maximum oxygen consumption (VO2peak) and energy cost-capacity (the ratio of VO2, at a slow speed to VO2peak). In addition, we tested the hypothesis that selected clinical factors would also be associated with 400-m walk time. RESULTS: Lower Max OXPHOS was associated with longer walk time, and the association was explained by the energetic costs of walking, leg power, and weight. Additionally, a multivariate model revealed that longer walk time was also significantly associated with lower VO2peak, greater cost-capacity ratio, weaker leg power, heavier weight, hip and knee stiffness, peripheral neuropathy, greater perceived exertion while walking slowly, greater physical fatigability, less moderate-to-vigorous exercise, less sedentary time, and anemia. Significant associations between age, sex, muscle mass, and peripheral artery disease with 400-m walk time were explained by other clinical and physiologic factors. CONCLUSIONS: Lower mitochondrial energetics is associated with needing more time to walk 400 m. This supports the value of developing interventions to improve mitochondrial energetics. Additionally, doing more moderate-to-vigorous exercise, increasing leg power, reducing weight, treating hip and knee stiffness, and screening for and treating anemia may reduce the time required to walk 400 m and reduce the risk of mobility disability.


Subject(s)
Anemia , Walking , Humans , Aging/physiology , Exercise , Muscle, Skeletal , Walking/physiology , Aged
15.
Article in English | MEDLINE | ID: mdl-38271209

ABSTRACT

BACKGROUND: Gut dysbiosis has been linked to frailty, but its association with early mobility decline is unclear. METHODS: First, we determined the cross-sectional associations between walking speed and the gut microbiome in 740 older men (84 ±â€…4 years) from the MrOS cohort with available stool samples and 400 m walking speed measured in 2014-2016. Then, we analyzed the retrospective longitudinal associations between changes in 6 m walking speed (from 2005-2006 to 2014-2016, calculated by simple linear equation) and gut microbiome composition among participants with available data (702/740). We determined gut microbiome composition by 16S sequencing and examined diversity, taxa abundance, and performed network analysis to identify differences in the gut microbiome network of fast versus slow walkers. RESULTS: Faster 400 m walking speed (m/s) was associated with greater microbiome α-diversity (R = 0.11; p = .004). The association between a slower decline in 6 m walking speed and higher α-diversity (R = 0.07; p = .054) approached borderline significance. Faster walking speed and less decline in walking speed were associated with a higher abundance of genus-level bacteria that produce short-chain fatty acids, and possess anti-inflammatory properties, including Paraprevotella, Fusicatenibacter, and Alistipes, after adjusting for potential covariates (p < .05). The gut microbiome networks of participants in the first versus last quartile of walking speed (≤0.9 vs ≥1.2 m/s) exhibited distinct characteristics, including different centrality measures (p < .05). CONCLUSIONS: Our findings suggest a possible relationship between gut microbiome diversity and mobility function, as indicated by the associations between faster walking speed and less decline in walking speed over 10 years with higher gut microbiome diversity in older men.


Subject(s)
Gastrointestinal Microbiome , Walking Speed , Male , Humans , Aged , Retrospective Studies , Cross-Sectional Studies
16.
Aging Cell ; 23(4): e14090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287525

ABSTRACT

Aging is increasingly thought to involve dysregulation of metabolism in multiple organ systems that culminate in decreased functional capacity and morbidity. Here, we seek to understand complex interactions among metabolism, aging, and systems-wide phenotypes across the lifespan. Among 2469 adults (mean age 74.7 years; 38% Black) in the Health, Aging and Body Composition study we identified metabolic cross-sectionally correlates across 20 multi-dimensional aging-related phenotypes spanning seven domains. We used LASSO-PCA and bioinformatic techniques to summarize metabolome-phenome relationships and derive metabolic scores, which were subsequently linked to healthy aging, mortality, and incident outcomes (cardiovascular disease, disability, dementia, and cancer) over 9 years. To clarify the relationship of metabolism in early adulthood to aging, we tested association of these metabolic scores with aging phenotypes/outcomes in 2320 participants (mean age 32.1, 44% Black) of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We observed significant overlap in metabolic correlates across the seven aging domains, specifying pathways of mitochondrial/cellular energetics, host-commensal metabolism, inflammation, and oxidative stress. Across four metabolic scores (body composition, mental-physical performance, muscle strength, and physical activity), we found strong associations with healthy aging and incident outcomes, robust to adjustment for risk factors. Metabolic scores for participants four decades younger in CARDIA were related to incident cardiovascular, metabolic, and neurocognitive performance, as well as long-term cardiovascular disease and mortality over three decades. Conserved metabolic states are strongly related to domain-specific aging and outcomes over the life-course relevant to energetics, host-commensal interactions, and mechanisms of innate immunity.


Subject(s)
Cardiovascular Diseases , Healthy Aging , Young Adult , Humans , Adult , Aged , Longevity , Aging , Risk Factors
17.
J Am Geriatr Soc ; 72(1): 219-225, 2024 01.
Article in English | MEDLINE | ID: mdl-37814920

ABSTRACT

BACKGROUND: Higher levels of frailty, quantified by a frailty index (FI), may be linked to fatigue severity as tasks become more physically and mentally demanding. Fatigue, a component of frailty research, has been ambiguous and inconsistent in its operationalization. Fatigability-the quantification of vulnerability to fatigue in relation to specific intensity and duration of activities-offers a more sensitive and standardized approach, though the association between frailty and fatigability has not been assessed. METHODS: Using cross-sectional data from the Long Life Family Study at Visit 2 (2014-2017; N = 2524; mean age ± standard deviation (SD) 71.4 ± 11.2 years; 55% women; 99% White), we examined associations between an 83-item FI after excluding fatigue items (ratio of number of health problems reported (numerator) out of the total assessed (denominator); higher ratio = greater frailty) and perceived physical and mental fatigability using the Pittsburgh Fatigability Scale (PFS) (range 0-50; higher scores = greater fatigability). RESULTS: Participants had mean ± standard deviation FI (0.08 ± 0.06; observed range: 0.0-0.43), PFS Physical (13.7 ± 9.6; 39.5% more severe, ≥15), and PFS Mental (7.9 ± 8.9; 22.8% more severe, ≥13). The prevalence of more severe physical and mental fatigability was higher across FI quartiles. In mixed effects models accounting for family structure, a clinically meaningful 3%-higher FI was associated with 1.9 points higher PFS Physical score (95% confidence interval (CI) 1.7-2.1) and 1.7 points higher PFS Mental score (95% CI 1.5-1.9) after adjusting for covariates. CONCLUSIONS: Frailty was associated with perceived physical and mental fatigability severity. Understanding this association may support the development of interventions to mitigate the risks associated with greater frailty and perceived fatigability. Including measurements of perceived fatigability, in lieu of fatigue, in frailty indices has the potential to alleviate the inconsistencies and ambiguity surrounding the operationalization of fatigue and provide a more precise and sensitive measurement of frailty.


Subject(s)
Frailty , Humans , Female , Male , Cross-Sectional Studies , Frailty/epidemiology , Fatigue/epidemiology , Research Design
18.
Article in English | MEDLINE | ID: mdl-37624693

ABSTRACT

BACKGROUND: Heterochronic parabiosis has identified growth differentiation factor (GDF)-11 as a potential means of cardiac rejuvenation, but findings have been inconsistent. A major barrier has been lack of assay specificity for GDF-11 and its homolog GDF-8. METHODS: We tested the hypothesis that GDF-11 and GDF-8, and their major antagonists follistatin and follistatin-like (FSTL)-3, are associated with incident heart failure (HF) and its subtypes in elders. Based on validation experiments, we used liquid chromatography-tandem mass spectrometry to measure total serum GDF-11 and GDF-8, along with follistatin and FSTL-3 by immunoassay, in 2 longitudinal cohorts of older adults. RESULTS: In 2 599 participants (age 75.2 ±â€…4.3) followed for 10.8 ±â€…5.6 years, 721 HF events occurred. After adjustment, neither GDF-11 (HR per doubling: 0.93 [0.67, 1.30]) nor GDF-8 (HR: 1.02 per doubling [0.83, 1.27]) was associated with incident HF or its subtypes. Positive associations with HF were detected for follistatin (HR: 1.15 [1.00, 1.32]) and FLST-3 (HR: 1.38 [1.03, 1.85]), and with HF with preserved ejection fraction for FSTL-3 (HR: 1.77 [1.03, 3.02]). (All HRs per doubling of biomarker.) FSTL-3 associations with HF appeared stronger at higher follistatin levels and vice versa, and also for men, Blacks, and lower kidney function. CONCLUSIONS: Among older adults, serum follistatin and FSTL-3, but not GDF-11 or GDF-8, were associated with incident HF. These findings do not support the concept that low serum levels of total GDF-11 or GDF-8 contribute to HF late in life, but do implicate transforming growth factor-ß superfamily pathways as potential therapeutic targets.


Subject(s)
Bone Morphogenetic Proteins , Growth Differentiation Factors , Heart Failure , Myostatin , Aged , Humans , Male , Biomarkers , Follistatin , Growth Differentiation Factor 15 , Heart Failure/blood , Heart Failure/epidemiology , Myostatin/blood , Bone Morphogenetic Proteins/blood , Growth Differentiation Factors/blood
19.
Geroscience ; 46(2): 1461-1475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37610595

ABSTRACT

The relationship between high plasma high-density lipoprotein cholesterol (HDL-C) and cause and mortality are not well established in healthy older people. This study examined the associations between HDL-C levels and mortality in initially healthy older men and women. This analysis included participants from the Aspirin in Reducing Events in the Elderly (ASPREE; n=18,668) trial and a matched cohort from the UK Biobank (UKB; n=62,849 ≥65 years). Cox regression was used to examine hazard ratios between HDL-C categories <1.03 mmol/L, 1.03-1.55 mmol/L (referent category), 1.55-2.07 mmol/L, and >2.07 mmol/L and all-cause, cancer, cardiovascular disease (CVD), and "non-cancer non-CVD" mortality. Genetic contributions were assessed using a polygenic score for HDL-C. Among ASPREE participants (aged 75±5 years), 1836 deaths occurred over a mean follow-up of 6.3±1.8 years. In men, the highest category of HDL-C levels was associated with increased risk of all-cause (HR 1.60, 95% CI 1.26-2.03), cancer (HR 1.37, 95% CI 0.96-2.00), and "non-cancer non-CVD" mortality (HR 2.35, 95% CI 1.41-3.42) but not CVD mortality (HR 1.08, 95% CI 0.60-1.94). The associations were replicated among UKB participants (aged 66.9±1.5 years), including 8739 deaths over a mean follow-up of 12.7±0.8 years. There was a non-linear association between HDL-C levels and all-cause and cause-specific mortality. The association between HDL-C levels and mortality was unrelated to variations in the HDL-C polygenic score. No significant association was found between HDL-C levels and mortality in women. Higher HDL-C levels are associated with increased risk from cancer and "non-cancer non-CVD" mortality in healthy older men but no such relationship was observed in women.


Subject(s)
Cardiovascular Diseases , Aged , Female , Humans , Male , Cholesterol, HDL , Proportional Hazards Models , Prospective Studies , Risk Factors , Aged, 80 and over , Clinical Trials as Topic
20.
Article in English | MEDLINE | ID: mdl-37464278

ABSTRACT

BACKGROUND: A goal of gerontology is to discover phenotypes that reflect biological aging distinct from disease pathogenesis. Biomarkers that are strongly associated with mortality could be used to define such a phenotype. However, the relation of such an index with multiple chronic conditions warrants further exploration. METHODS: A biomarker index (BI) was constructed in the Cardiovascular Health Study (N = 3 197), with a mean age of 74 years. The BI incorporated circulating levels of new biomarkers, including insulin-like growth factor-1, interleukin-6, amino-terminal pro-B-type natriuretic peptide, cystatin-C, C-reactive protein, tumor necrosis factor-alpha soluble receptor 1, fasting insulin, and fasting glucose, and was built based on their relationships with mortality. Cox proportional hazards models predicting a composite of death and chronic disease involving cardiovascular disease, dementia, and cancer were calculated with 6 years of follow-up. RESULTS: The hazard ratio (HR, 95% CI) for the composite outcome of death or chronic disease per category of BI was 1.65 (1.52, 1.80) and 1.75 (1.58, 1.94) in women and men, respectively. The HR (95% CI) per 5 years of age was 1.57 (1.48, 1.67) and 1.55 (1.44, 1.67) in women and men, respectively. Moreover, BI could attenuate the effect of age on the composite outcome by 16.7% and 22.0% in women and men, respectively. CONCLUSIONS: Biomarker index was significantly and independently associated with a composite outcome of death and chronic disease, and attenuated the effect of age. The BI that is composed of plasma biomarkers may be a practical intermediate phenotype for interventions aiming to modify the course of aging.


Subject(s)
Aging , Cardiovascular Diseases , Male , Humans , Female , Aged , Risk Factors , Prospective Studies , Biomarkers , Peptide Fragments , Chronic Disease , Natriuretic Peptide, Brain , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...