Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Planets ; 127(6): e2021JE007096, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35865672

ABSTRACT

Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.

2.
Sci Adv ; 8(21): eabn3783, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613267

ABSTRACT

Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils"). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.

3.
Icarus ; 329: 197-206, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31359883

ABSTRACT

This paper updates the record of atmospheric dust loading within northern Gale Crater, Mars, by providing line-of-sight extinction (LOS-Ext) measurements of the intervening dust between the rover and the crater rim. These measurements are derived from images taken with the Navigation Cameras (Navcam) onboard the Mars Science Laboratory (MSL) rover, Curiosity. The observations span 2.44 Mars years, from Mars Year (MY) 31 at a solar longitude (L S ) of 208° to t L S = 7° of MY34, sols 100 - 1701 of the MSL surface mission. This work examines the dataset for seasonal trends of the LOS-Ext in addition to horizontal variations and the vertical structure of LOS-Ext. The LOS-Ext has a repetitive pattern with a single peak in the latter half of the Mars year. The atmosphere in the crater is well mixed horizontally but not vertically as larger LOS-Ext is seen nearer the crater floor than at higher altitudes within the crater. The results allow a discussion on whether or not Gale Crater is a sink for atmospheric dust or a source of atmospheric dust in the current era.

4.
J Exp Biol ; 220(Pt 18): 3344-3354, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28705828

ABSTRACT

The ability to survive and reproduce after cold exposure is important in all kingdoms of life. However, even in a sophisticated genetic model system like Drosophila melanogaster, few genes have been identified as functioning in cold tolerance. The accumulation of the Frost (Fst) gene transcript increases after cold exposure, making it a good candidate for a gene that has a role in cold tolerance. Despite extensive RNAi knockdown analysis, no role in cold tolerance has been assigned to Fst CRISPR is an effective technique for completely knocking down genes, and is less likely to produce off-target effects than GAL4-UAS RNAi systems. We have used CRISPR-mediated homologous recombination to generate Fst-null alleles, and these Fst alleles uncovered a requirement for FST protein in maintaining female fecundity following cold exposure. However, FST does not have a direct role in survival following cold exposure. FST mRNA accumulates in the Malpighian tubules, and the FST protein is a highly disordered protein with a putative signal peptide for export from the cell. Future work is needed to determine whether FST is exported from the Malpighian tubules and directly interacts with female reproductive tissues post-cold exposure, or whether it is required for other repair/recovery functions that indirectly alter energy allocation to reproduction.


Subject(s)
CRISPR-Cas Systems , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Gene Expression , Animals , Cold Temperature , Drosophila Proteins/metabolism , Female , Loss of Function Mutation , Male , Malpighian Tubules/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reproduction
5.
Icarus ; 291: 203-231, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-30393391

ABSTRACT

A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over ~80 sols around southern winter solstice (Ls~90°) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to Available online 14 December 2016 fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (~09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (~20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of ~490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at ~09:00, and under-predicts the strength of daytime wind speeds by ~2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation threshold, and also appears to show the influence of the dune body on the local flow, though less clearly than in the lee. Using a vertical grid with lower resolution near the surface reduces the relative strength of nighttime winds predicted by MarsWRF and produces a peak in wind speed at ~09:00, improving the match to the observed diurnal variation of wind speed, albeit with an offset in magnitude. The annual wind field predicted using this grid also provides a far better match to observations of aeolian dune morphology and motion in the Bagnold Dunes. However, the lower overall wind speeds than observed and disagreement with the observed wind direction at ~09:00 suggest that the problem has not been solved and that alternative boundary layer mixing schemes should be explored which may result in more mixing of momentum down to the near-surface from higher layers. These results demonstrate a strong need for in situ wind data to constrain the setup and assumptions used in numerical models, so that they may be used with more confidence to predict the circulation at other times and locations on Mars.

SELECTION OF CITATIONS
SEARCH DETAIL
...