Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(10): e9396, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36262264

ABSTRACT

A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.

2.
New Phytol ; 236(4): 1558-1571, 2022 11.
Article in English | MEDLINE | ID: mdl-36068954

ABSTRACT

Shifts in flowering phenology are important indicators of climate change. However, the role of precipitation in driving phenology is far less understood compared with other environmental cues, such as temperature. We use a precipitation reduction gradient to test the direction and magnitude of effects on reproductive phenology and reproduction across 11 plant species in a temperate grassland, a moisture-limited ecosystem. Our experiment was conducted in a single, relatively wet year. We examine the effects of precipitation for species, functional types, and the community. Our results provide evidence that reduced precipitation shifts phenology, alters flower and fruit production, and that the magnitude and direction of the responses depend on functional type and species. For example, early-blooming species shift toward earlier flowering, whereas later-blooming species shift toward later flowering. Because of opposing species-level shifts, there is no overall shift in community-level phenology. This study provides experimental evidence that changes in rainfall can drive phenological shifts. Our results additionally highlight the importance of understanding how plant functional types govern responses to changing climate conditions, which is relevant for forecasting phenology and community-level changes. Specifically, the implications of divergent phenological shifts between early- and late-flowering species include resource scarcity for pollinators and seed dispersers and new temporal windows for invasion.


Subject(s)
Droughts , Ecosystem , Grassland , Climate Change , Flowers/physiology , Temperature , Plants , Seasons
3.
BMC Ecol ; 19(1): 43, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615504

ABSTRACT

BACKGROUND: In light of the biodiversity crisis and our limited ability to explain variation in biodiversity, tools to quantify spatial and temporal variation in biodiversity and its underlying drivers are critically needed. Inspired by the recently published ecospace framework, we developed and tested a sampling design for environmental and biotic mapping. We selected 130 study sites (40 × 40 m) across Denmark using stratified random sampling along the major environmental gradients underlying biotic variation. Using standardized methods, we collected site species data on vascular plants, bryophytes, macrofungi, lichens, gastropods and arthropods. To evaluate sampling efficiency, we calculated regional coverage (relative to the known species number per taxonomic group), and site scale coverage (i.e., sample completeness per taxonomic group at each site). To extend taxonomic coverage to organisms that are difficult to sample by classical inventories (e.g., nematodes and non-fruiting fungi), we collected soil for metabarcoding. Finally, to assess site conditions, we mapped abiotic conditions, biotic resources and habitat continuity. RESULTS: Despite the 130 study sites only covering a minute fraction (0.0005%) of the total Danish terrestrial area, we found 1774 species of macrofungi (54% of the Danish fungal species pool), 663 vascular plant species (42%), 254 bryophyte species (41%) and 200 lichen species (19%). For arthropods, we observed 330 spider species (58%), 123 carabid beetle species (37%) and 99 hoverfly species (33%). Overall, sample coverage was remarkably high across taxonomic groups and sufficient to capture substantial spatial variation in biodiversity across Denmark. This inventory is nationally unprecedented in detail and resulted in the discovery of 143 species with no previous record for Denmark. Comparison between plant OTUs detected in soil DNA and observed plant species confirmed the usefulness of carefully curated environmental DNA-data. Correlations among species richness for taxonomic groups were predominantly positive, but did not correlate well among all taxa suggesting differential and complex biotic responses to environmental variation. CONCLUSIONS: We successfully and adequately sampled a wide range of diverse taxa along key environmental gradients across Denmark using an approach that includes multi-taxon biodiversity assessment and ecospace mapping. Our approach is applicable to assessments of biodiversity in other regions and biomes where species are structured along environmental gradient.


Subject(s)
Biodiversity , Ecosystem , Denmark , Fungi , Surveys and Questionnaires
4.
Ecology ; 100(7): e02695, 2019 07.
Article in English | MEDLINE | ID: mdl-31120557

ABSTRACT

Understanding how altered soil organic carbon (SOC) availability affects microbial communities and their function is imperative in predicting impacts of global change on soil carbon (C) storage and ecosystem function. However, the response of soil microbial communities and their function to depleted C availability in situ is unclear. We evaluated the role of soil C inputs in controlling microbial biomass, community composition, physiology, and function by (1) experimentally excluding plant C inputs in situ for 9 yr in four temperate forest ecosystems along a productivity gradient in Oregon, USA; and (2) integrating these findings with published data from similar C-exclusion studies into a global meta-analysis. Excluding plant C inputs for 9 yr resulted in a 13% decrease in SOC across the four Oregon sites and an overall shift in the microbial community composition, with a 45% decrease in the fungal : bacterial ratio and a 13% increase in Gram-positive : Gram-negative bacterial ratio. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest-productivity site. Microbial biomass showed a variable response to C exclusion that was method dependent; however, we detected a 29% decrease in C-use efficiency across the sites, with greater declines occurring in less-productive sites. Although extracellular enzyme activity increased with C exclusion, C exclusion resulted in a 31% decrease in microbial respiration across all sites. Our meta-analyses of published data with similar C-exclusion treatments were largely consistent with our experimental results, showing decreased SOC, fungal : bacterial ratios, and microbial respiration, and increased Gram-positive : Gram-negative bacterial ratio following exclusion of C inputs to soil. Effect sizes of SOC and respiration correlated negatively with the duration of C exclusion; however, there were immediate effects of C exclusion on microbial community composition and biomass that were unaltered by duration of treatment. Our field-based experimental results and analyses demonstrate unequivocally the dominant control of C availability on soil microbial biomass, community composition, and function, and provide additional insight into the mechanisms for these effects in forest ecosystems.


Subject(s)
Carbon , Ecosystem , Biomass , Nitrogen , Oregon , Soil , Soil Microbiology
5.
Nat Ecol Evol ; 1(12): 1836-1845, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29133902

ABSTRACT

Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.


Subject(s)
Carbon Cycle , Climate , Soil Microbiology , Climate Change , Europe , Models, Theoretical
6.
PLoS One ; 8(4): e62671, 2013.
Article in English | MEDLINE | ID: mdl-23658639

ABSTRACT

To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.


Subject(s)
Fatty Acids/metabolism , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Plant Leaves/chemistry , Soil Microbiology , Soil/chemistry , Biodiversity , Biomarkers/metabolism , Ecosystem , Microbial Consortia/physiology , Time Factors , Trees
7.
Oecologia ; 162(3): 763-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19921274

ABSTRACT

The interactive effects of diversity in plants and microbial communities at the litter interface are not well understood. Mixtures of plant litter from different species often decompose differently than when individual species decompose alone. Previously, we found that litter mixtures of multiple conifers decomposed more rapidly than expected, but litter mixtures that included conifer and aspen litter did not. Understanding the mechanisms underlying these diversity effects may help explain existing anomalous decay dynamics and provide a glimpse into the elusive linkage between plant diversity and the fungi and bacteria that carry out decomposition. We examined the microbial communities on litter from individual plant species decomposing both in mixture and alone. We assessed two main hypotheses to explain how the decomposer community could stimulate mixed-litter decomposition above predicted rates: either by being more abundant, or having a different or more diverse community structure than when microbes decompose a single species of litter. Fungal, bacterial and total phospholipid fatty acid microbial biomass increased by over 40% on both conifer and aspen litter types in mixture, and microbial community composition changed significantly when plant litter types were mixed. Microbial diversity also increased with increasing plant litter diversity. While our data provide support for both the increased abundance hypothesis and the altered microbial community hypothesis, microbial changes do not translate to predictably altered litter decomposition and may only produce synergisms when mixed litters are functionally similar.


Subject(s)
Biodiversity , Plants , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...