Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34610277

ABSTRACT

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Subject(s)
Auditory Cortex/metabolism , Bombesin/metabolism , Fear/physiology , Memory/physiology , Nerve Net/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium Signaling , Conditioning, Classical , Gastrin-Releasing Peptide/chemistry , Gastrin-Releasing Peptide/metabolism , Gene Expression Regulation , Genes, Immediate-Early , HEK293 Cells , Humans , Intracellular Space/metabolism , Male , Mice, Inbred C57BL , Receptors, Bombesin/metabolism , Sound , Vasoactive Intestinal Peptide/metabolism
2.
PLoS Biol ; 18(1): e3000604, 2020 01.
Article in English | MEDLINE | ID: mdl-31935214

ABSTRACT

Schizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients. We find evidence that microglia-mediated synaptic engulfment is enhanced with increased expression of C4. We also show that C4-dependent circuit dysfunction in the frontal cortex leads to decreased social interactions in juvenile and adult mice. These results demonstrate that increased expression of the schizophrenia-associated gene C4 causes aberrant circuit wiring in the developing prefrontal cortex and leads to deficits in juvenile and adult social behavior, suggesting that altered C4 expression contributes directly to schizophrenia pathogenesis.


Subject(s)
Complement C4/genetics , Neurons/physiology , Prefrontal Cortex/cytology , Schizophrenia/genetics , Social Behavior , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Animals, Newborn , Cell Communication/genetics , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways/metabolism , Prefrontal Cortex/pathology , Schizophrenia/pathology , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL