Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Dev Dyn ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721717

ABSTRACT

BACKGROUND: Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development. RESULTS: We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials. CONCLUSIONS: The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.

2.
Genesis ; 62(1): e23531, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37443419

ABSTRACT

Formation of the vertebrate limb buds begins with a localized epithelial-to-mesenchymal transition (EMT) of the somatic lateral plate mesoderm (LPM). While the processes that drive proliferation and outgrowth of the limb mesenchyme are well established, the fundamental mechanisms that precede this process and initiate EMT are less understood. In this review, we outline putative drivers of EMT of the LPM, drawing from analyses across a range of vertebrates and developmental models. We detail the expression patterns of key EMT transcriptional regulators in the somatic LPM of the presumptive limb fields, and their potential role in producing a mesenchymal cell fate. These include a putative cooperative role between the EMT inducers PRRX1 and TWIST1, supported by evidence in zebrafish and chicken models but unconfirmed data from mice. As such, additional functional data are required to definitively determine the mechanisms that initiate and drive EMT of the somatic LPM, a critical transition preceding formation of the limb bud mesenchyme.


Subject(s)
Zebrafish Proteins , Zebrafish , Mice , Animals , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Mesoderm/metabolism , Epithelial-Mesenchymal Transition
3.
Development ; 149(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36093878

ABSTRACT

The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.


Subject(s)
Gene Expression Regulation, Developmental , Mesoderm , Animals , Cell Lineage , Chick Embryo , Forelimb , Limb Buds
4.
Front Cell Dev Biol ; 10: 941168, 2022.
Article in English | MEDLINE | ID: mdl-35813210

ABSTRACT

Studies across vertebrates have revealed significant insights into the processes that drive craniofacial morphogenesis, yet we still know little about how distinct facial morphologies are patterned during development. Studies largely point to evolution in GRNs of cranial progenitor cell types such as neural crest cells, as the major driver underlying adaptive cranial shapes. However, this hypothesis requires further validation, particularly within suitable models amenable to manipulation. By utilizing comparative models between related species, we can begin to disentangle complex developmental systems and identify the origin of species-specific patterning. Mammals present excellent evolutionary examples to scrutinize how these differences arise, as sister clades of eutherians and marsupials possess suitable divergence times, conserved cranial anatomies, modular evolutionary patterns, and distinct developmental heterochrony in their NCC behaviours and craniofacial patterning. In this review, I lend perspectives into the current state of mammalian craniofacial biology and discuss the importance of establishing a new marsupial model, the fat-tailed dunnart, for comparative research. Through detailed comparisons with the mouse, we can begin to decipher mammalian conserved, and species-specific processes and their contribution to craniofacial patterning and shape disparity. Recent advances in single-cell multi-omics allow high-resolution investigations into the cellular and molecular basis of key developmental processes. As such, I discuss how comparative evolutionary application of these tools can provide detailed insights into complex cellular behaviours and expression dynamics underlying adaptive craniofacial evolution. Though in its infancy, the field of "comparative evo-devo-omics" presents unparalleled opportunities to precisely uncover how phenotypic differences arise during development.

5.
Commun Biol ; 4(1): 1028, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475507

ABSTRACT

Marsupials exhibit unique biological features that provide fascinating insights into many aspects of mammalian development. These include their distinctive mode of reproduction, altricial stage at birth, and the associated heterochrony that is required for their crawl to the pouch and teat attachment. Marsupials are also an invaluable resource for mammalian comparative biology, forming a distinct lineage from the extant placental and egg-laying monotreme mammals. Despite their unique biology, marsupial resources are lagging behind those available for placentals. The fat-tailed dunnart (Sminthopsis crassicaudata) is a laboratory based marsupial model, with simple and robust husbandry requirements and a short reproductive cycle making it amenable to experimental manipulations. Here we present a detailed staging series for the fat-tailed dunnart, focusing on their accelerated development of the forelimbs and jaws. This study provides the first skeletal developmental series on S. crassicaudata and provides a fundamental resource for future studies exploring mammalian diversification, development and evolution.


Subject(s)
Marsupialia/growth & development , Models, Animal , Skeleton/growth & development , Animals , Female , Male
6.
Commun Biol ; 4(1): 51, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420327

ABSTRACT

Phenotypic convergence, describing the independent evolution of similar characteristics, offers unique insights into how natural selection influences developmental and molecular processes to generate shared adaptations. The extinct marsupial thylacine and placental gray wolf represent one of the most extraordinary cases of convergent evolution in mammals, sharing striking cranial similarities despite 160 million years of independent evolution. We digitally reconstructed their cranial ontogeny from birth to adulthood to examine how and when convergence arises through patterns of allometry, mosaicism, modularity, and integration. We find the thylacine and wolf crania develop along nearly parallel growth trajectories, despite lineage-specific constraints and heterochrony in timing of ossification. These constraints were found to enforce distinct cranial modularity and integration patterns during development, which were unable to explain their adult convergence. Instead, we identify a developmental origin for their convergent cranial morphologies through patterns of mosaic evolution, occurring within bone groups sharing conserved embryonic tissue origins. Interestingly, these patterns are accompanied by homoplasy in gene regulatory networks associated with neural crest cells, critical for skull patterning. Together, our findings establish empirical links between adaptive phenotypic and genotypic convergence and provides a digital resource for further investigations into the developmental basis of mammalian evolution.


Subject(s)
Biological Evolution , Marsupialia/growth & development , Skull/growth & development , Wolves/growth & development , Animals , Biometry
8.
Dev Dyn ; 250(9): 1248-1263, 2021 09.
Article in English | MEDLINE | ID: mdl-33368781

ABSTRACT

The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.


Subject(s)
Dromaiidae , Animals , Extremities , Forelimb , Gene Expression Regulation, Developmental , Limb Buds , Vertebrates , Wings, Animal
9.
Commun Biol ; 3(1): 771, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319865

ABSTRACT

Runt-related transcription factor 2 (RUNX2) is critical for the development of the vertebrate bony skeleton. Unlike other RUNX family members, RUNX2 possesses a variable poly-glutamine, poly-alanine (QA) repeat domain. Natural variation within this repeat is able to alter the transactivation potential of RUNX2, acting as an evolutionary 'tuning knob' suggested to influence mammalian skull shape. However, the broader role of the RUNX2 QA repeat throughout vertebrate evolution is unknown. In this perspective, we examine the role of the RUNX2 QA repeat during skeletal development and discuss how its emergence and expansion may have facilitated the evolution of morphological novelty in vertebrates.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Evolution, Molecular , Repetitive Sequences, Nucleic Acid , Vertebrates/genetics , Animals , Humans , Mammals/classification , Mammals/genetics , Multigene Family , Open Reading Frames , Osteogenesis/genetics , Phylogeny , Vertebrates/classification
10.
BMC Mol Cell Biol ; 21(1): 27, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295522

ABSTRACT

BACKGROUND: Changes in gene regulation are widely recognized as an important driver of adaptive phenotypic evolution. However, the specific molecular mechanisms that underpin such changes are still poorly understood. Chromatin state plays an essential role in gene regulation, by influencing the accessibility of coding loci to the transcriptional machinery. Changes in the function of chromatin remodellers are therefore strong candidates to drive changes in gene expression associated with phenotypic adaptation. Here, we identify amino acid homoplasies in the chromatin remodeller CHD9, shared between the extinct marsupial thylacine and eutherian wolf which show remarkable skull convergence. CHD9 is involved in osteogenesis, though its role in the process is still poorly understood. We examine whether CHD9 is able to regulate the expression of osteogenic target genes and examine the function of a key substitution in the CHD9 DNA binding domain. RESULTS: We examined whether CHD9 was able to upregulate its osteogenic target genes, RUNX2, Osteocalcin (OC) and ALP in HEK293T cells. We found that overexpression of CHD9 upregulated RUNX2, the master regulator of osteoblast cell fate, but not the downstream genes OC or ALP, supporting the idea that CHD9 regulates osteogenic progenitors rather than terminal osteoblasts. We also found that the evolutionary substitution in the CHD9 DNA binding domain does not alter protein secondary structure, but was able to drive a small but insignificant increase in RUNX2 activation. Finally, CHD9 was unable to activate an episomal RUNX2 promoter-reporter construct, suggesting that CHD9 requires the full chromatin complement for its function. CONCLUSIONS: We provide new evidence to the role of CHD9 in osteogenic differentiation through its newly observed ability to upregulate the expression of RUNX2. Though we were unable to identify significant functional consequences of the evolutionary substitution in HEK293T cells, our study provides important steps forward in the functional investigation of protein homoplasy and its role in developmental processes. Mutations in coding genes may be a mechanism for driving adaptive changes in gene expression, and their validation is essential towards determining the functional consequences of evolutionary homoplasy.


Subject(s)
Core Binding Factor Alpha 1 Subunit , DNA Helicases/metabolism , Trans-Activators/metabolism , Biological Evolution , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Evolution, Molecular , Gene Expression Regulation , HEK293 Cells , Humans , Osteogenesis/genetics , Skeleton , Transcriptional Activation
11.
Genome Res ; 29(10): 1648-1658, 2019 10.
Article in English | MEDLINE | ID: mdl-31533979

ABSTRACT

The extinct marsupial Tasmanian tiger, or thylacine, and the eutherian gray wolf are among the most widely recognized examples of convergent evolution in mammals. Despite being distantly related, these large predators independently evolved extremely similar craniofacial morphologies, and evidence suggests that they filled similar ecological niches. Previous analyses revealed little evidence of adaptive convergence between their protein-coding genes. Thus, the genetic basis of their convergence is still unclear. Here, we identified candidate craniofacial cis-regulatory elements across vertebrates and compared their evolutionary rates in the thylacine and wolf, revealing abundant signatures of convergent positive selection. Craniofacial thylacine-wolf accelerated regions were enriched near genes involved in TGF beta (TGFB) and BMP signaling, both of which are key morphological signaling pathways with critical roles in establishing the identities and boundaries between craniofacial tissues. Similarly, enhancers of genes involved in craniofacial nerve development showed convergent selection and involvement in these pathways. Taken together, these results suggest that adaptation in cis-regulators of TGF beta and BMP signaling may provide a mechanism to explain the coevolution of developmentally and functionally integrated craniofacial structures in these species. We also found that despite major structural differences in marsupial and eutherian brains, accelerated regions in both species were common near genes with roles in brain development. Our findings support the hypothesis that, relative to protein-coding genes, positive selection on cis-regulatory elements is likely to be an essential driver of adaptive convergent evolution and may underpin thylacine-wolf phenotypic similarities.


Subject(s)
Evolution, Molecular , Gene Regulatory Networks/genetics , Marsupialia/genetics , Wolves/genetics , Animals , Gene Expression Regulation/genetics , Mammals , Species Specificity
12.
R Soc Open Sci ; 5(2): 171914, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515893

ABSTRACT

The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was an iconic Australian marsupial predator that was hunted to extinction in the early 1900s. Despite sharing striking similarities with canids, they failed to evolve many of the specialized anatomical features that characterize carnivorous placental mammals. These evolutionary limitations are thought to arise from functional constraints associated with the marsupial mode of reproduction, in which otherwise highly altricial young use their well-developed forelimbs to climb to the pouch and mouth to suckle. Here we present the first three-dimensional digital developmental series of the thylacine throughout its pouch life using X-ray computed tomography on all known ethanol-preserved specimens. Based on detailed skeletal measurements, we refine the species growth curve to improve age estimates for the individuals. Comparison of allometric growth trends in the appendicular skeleton (fore- and hindlimbs) with that of other placental and marsupial mammals revealed that despite their unique adult morphologies, thylacines retained a generalized early marsupial ontogeny. Our approach also revealed mislabelled specimens that possessed large epipubic bones (vestigial in thylacine) and differing vertebral numbers. All of our generated CT models are publicly available, preserving their developmental morphology and providing a novel digital resource for future studies of this unique marsupial.

13.
Nat Ecol Evol ; 2(1): 182-192, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29230027

ABSTRACT

The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.


Subject(s)
Evolution, Molecular , Genome , Marsupialia/genetics , Animals , Australia , Demography , Phylogeny , Sequence Analysis, DNA
14.
BMC Evol Biol ; 17(1): 110, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28472940

ABSTRACT

BACKGROUND: Runt-related transcription factor 2 (RUNX2) is a transcription factor essential for skeletal development. Variation within the RUNX2 polyglutamine / polyalanine (QA) repeat is correlated with facial length within orders of placental mammals and is suggested to be a major driver of craniofacial diversity. However, it is not known if this correlation exists outside of the placental mammals. RESULTS: Here we examined the correlation between the RUNX2 QA repeat ratio and facial length in the naturally evolving sister group to the placental mammals, the marsupials. Marsupials have a diverse range of facial lengths similar to that seen in placental mammals. Despite their diversity there was almost no variation seen in the RUNX2 QA repeat across individuals spanning the entire marsupial infraclass. The extreme conservation of the marsupial RUNX2 QA repeat indicates it is under strong purifying selection. Despite this, we observed an unexpectedly high level of repeat purity. CONCLUSIONS: Unlike within orders of placental mammals, RUNX2 repeat variation cannot drive craniofacial diversity in marsupials. We propose conservation of the marsupial RUNX2 QA repeat is driven by the constraint of accelerated ossification of the anterior skeleton to facilitate life in the pouch. Thus, marsupials must utilize alternate pathways to placental mammals to drive craniofacial evolution.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Marsupialia/anatomy & histology , Marsupialia/genetics , Skull/anatomy & histology , Animals , Biological Evolution , Mammals/anatomy & histology , Mammals/classification , Mammals/genetics , Marsupialia/classification , Osteogenesis , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...