Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Front Immunol ; 13: 768076, 2022.
Article in English | MEDLINE | ID: mdl-35185874

ABSTRACT

The gastrointestinal tract represents one of the largest body surfaces that is exposed to the outside world. It is the only mucosal surface that is required to simultaneously recognize and defend against pathogens, while allowing nutrients containing foreign antigens to be tolerated and absorbed. It differentiates between these foreign substances through a complex system of pattern recognition receptors expressed on the surface of the intestinal epithelial cells as well as the underlying immune cells. These immune cells actively sample and evaluate microbes and other particles that pass through the lumen of the gut. This local sensing system is part of a broader distributed signaling system that is connected to the rest of the body through the enteric nervous system, the immune system, and the metabolic system. While local tissue homeostasis is maintained by commensal bacteria that colonize the gut, colonization itself may not be required for the activation of distributed signaling networks that can result in modulation of peripheral inflammation. Herein, we describe the ability of a gut-restricted strain of commensal bacteria to drive systemic anti-inflammatory effects in a manner that does not rely upon its ability to colonize the gastrointestinal tract or alter the mucosal microbiome. Orally administered EDP1867, a gamma-irradiated strain of Veillonella parvula, rapidly transits through the murine gut without colonization or alteration of the background microbiome flora. In murine models of inflammatory disease including delayed-type hypersensitivity (DTH), atopic dermatitis, psoriasis, and experimental autoimmune encephalomyelitis (EAE), treatment with EDP1867 resulted in significant reduction in inflammation and immunopathology. Ex vivo cytokine analyses revealed that EDP1867 treatment diminished production of pro-inflammatory cytokines involved in inflammatory cascades. Furthermore, blockade of lymphocyte migration to the gut-associated lymphoid tissues impaired the ability of EDP1867 to resolve peripheral inflammation, supporting the hypothesis that circulating immune cells are responsible for promulgating the signals from the gut to peripheral tissues. Finally, we show that adoptively transferred T cells from EDP1867-treated mice inhibit inflammation induced in recipient mice. These results demonstrate that an orally-delivered, non-viable strain of commensal bacteria can mediate potent anti-inflammatory effects in peripheral tissues through transient occupancy of the gastrointestinal tract, and support the development of non-living bacterial strains for therapeutic applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/immunology , Cytokines/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/immunology , Animals , Bacteria/drug effects , Bacteria/growth & development , Epithelial Cells/drug effects , Female , Humans , Immunity, Mucosal , Inflammation/etiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Symbiosis , T-Lymphocytes/metabolism
2.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597140

ABSTRACT

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

3.
J Immunol ; 205(2): 414-424, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32522834

ABSTRACT

Genome-wide association studies have identified common genetic variants impacting human diseases; however, there are indications that the functional consequences of genetic polymorphisms can be distinct depending on cell type-specific contexts, which produce divergent phenotypic outcomes. Thus, the functional impact of genetic variation and the underlying mechanisms of disease risk are modified by cell type-specific effects of genotype on pathological phenotypes. In this study, we extend these concepts to interrogate the interdependence of cell type- and stimulation-specific programs influenced by the core autophagy gene Atg16L1 and its T300A coding polymorphism identified by genome-wide association studies as linked with increased risk of Crohn's disease. We applied a stimulation-based perturbational profiling approach to define Atg16L1 T300A phenotypes in dendritic cells and T lymphocytes. Accordingly, we identified stimulus-specific transcriptional signatures revealing T300A-dependent functional phenotypes that mechanistically link inflammatory cytokines, IFN response genes, steroid biosynthesis, and lipid metabolism in dendritic cells and iron homeostasis and lysosomal biogenesis in T lymphocytes. Collectively, these studies highlight the combined effects of Atg16L1 genetic variation and stimulatory context on immune function.


Subject(s)
Autophagy-Related Proteins/metabolism , Crohn Disease/metabolism , Dendritic Cells/physiology , Genotype , T-Lymphocytes/physiology , Animals , Autophagy-Related Proteins/genetics , Cells, Cultured , Crohn Disease/genetics , Genetic Predisposition to Disease , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Phenotype , Polymorphism, Genetic , Risk , Transcriptional Activation
4.
Cell Host Microbe ; 24(5): 677-688.e5, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30392830

ABSTRACT

Intestinal reovirus infection can trigger T helper 1 (TH1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces TH1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant. Transcriptional profiling of mesenteric lymph nodes following infection reveals an immunopathological signature that does not segregate with protective immunity but with loss of oral tolerance, in which interferon regulatory factor 1 is critical. These data show that viral capacity to trigger specific inflammatory pathways at sites where T cell responses to dietary antigens take place interferes with the development of tolerance to an oral antigen. Collectively, these data provide a foundation for the development of therapeutic strategies to prevent TH1-mediated complex immune disorders triggered by viral infections.


Subject(s)
Caliciviridae Infections/immunology , Diet , Norovirus/immunology , Norovirus/pathogenicity , Ovalbumin/immunology , Th1 Cells/immunology , Administration, Oral , Animals , Caliciviridae Infections/virology , Capsid Proteins/immunology , Celiac Disease/immunology , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunity , Inflammation , Interferon Regulatory Factor-1/immunology , Lymph Nodes , Mice , Mice, Inbred C57BL , Ovalbumin/administration & dosage , Virus Shedding
5.
Cell Rep ; 24(4): 838-850, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30044981

ABSTRACT

Phagocyte microbiocidal mechanisms and inflammatory cytokine production are temporally coordinated, although their respective interdependencies remain incompletely understood. Here, we identify a nitric-oxide-mediated antioxidant response as a negative feedback regulator of inflammatory cytokine production in phagocytes. In this context, Keap1 functions as a cellular redox sensor that responds to elevated reactive nitrogen intermediates by eliciting an adaptive transcriptional program controlled by Nrf2 and comprised of antioxidant genes, including Prdx5. We demonstrate that engaging the antioxidant response is sufficient to suppress Toll-like receptor (TLR)-induced cytokine production in dendritic cells and that Prdx5 is required for attenuation of inflammatory cytokine production. Collectively, these findings delineate the reciprocal regulation of inflammation and cellular redox systems in myeloid cells.


Subject(s)
Nitric Oxide/metabolism , Peroxiredoxins/metabolism , Phagocytes/metabolism , Animals , Bone Marrow Cells/metabolism , Cytokines/biosynthesis , Feedback, Physiological , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Signal Transduction
7.
Nat Commun ; 8: 15865, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28656966

ABSTRACT

Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear. Here we show that ZNRF4 induces K48-linked ubiquitination of RIP2 and promotes RIP2 degradation. A fraction of RIP2 localizes to the endoplasmic reticulum (ER), where it interacts with ZNRF4 under either 55 unstimulated and muramyl dipeptide-stimulated conditions. Znrf4 knockdown monocytes have sustained nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and Znrf4 knockdown mice have reduced NOD2-induced tolerance and more effective control of Listeria monocytogenes infection. Our results thus demonstrate E3-ubiquitin ligase ZNRF4-mediated RIP2 degradation as a negative regulatory mechanism of NOD2-induced NF-κB, cytokine and anti-bacterial responses in vitro and in vivo, and identify a ZNRF4-RIP2 axis of fine-tuning NOD2 signalling to promote protective host immunity.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , DNA-Binding Proteins/metabolism , Immune Tolerance , Nod2 Signaling Adaptor Protein/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , HEK293 Cells , Humans , Immune Tolerance/drug effects , Listeria monocytogenes/pathogenicity , Listeriosis/immunology , Listeriosis/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Monocytes/metabolism , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction/physiology , Ubiquitination/drug effects
8.
Science ; 356(6333): 44-50, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28386004

ABSTRACT

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Subject(s)
Antigens/immunology , Celiac Disease/immunology , Celiac Disease/virology , Glutens/immunology , Inflammation/virology , Reoviridae Infections/complications , Reoviridae Infections/immunology , Th1 Cells/immunology , Animals , Diet/adverse effects , Disease Models, Animal , Genetic Engineering , Humans , Immune Tolerance , Inflammation/immunology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Intestines/immunology , Intestines/pathology , Intestines/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Reoviridae/genetics
9.
Cell Rep ; 17(11): 2955-2965, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27974209

ABSTRACT

Significant insights into disease pathogenesis have been gleaned from population-level genetic studies; however, many loci associated with complex genetic disease contain numerous genes, and phenotypic associations cannot be assigned unequivocally. In particular, a gene-dense locus on chromosome 11 (61.5-61.65 Mb) has been associated with inflammatory bowel disease, rheumatoid arthritis, and coronary artery disease. Here, we identify TMEM258 within this locus as a central regulator of intestinal inflammation. Strikingly, Tmem258 haploinsufficient mice exhibit severe intestinal inflammation in a model of colitis. At the mechanistic level, we demonstrate that TMEM258 is a required component of the oligosaccharyltransferase complex and is essential for N-linked protein glycosylation. Consequently, homozygous deficiency of Tmem258 in colonic organoids results in unresolved endoplasmic reticulum (ER) stress culminating in apoptosis. Collectively, our results demonstrate that TMEM258 is a central mediator of ER quality control and intestinal homeostasis.


Subject(s)
Hexosyltransferases/genetics , Inflammatory Bowel Diseases/genetics , Membrane Proteins/genetics , Animals , Apoptosis , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/genetics , Glycosylation , Hexosyltransferases/metabolism , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Membrane Proteins/metabolism , Mice
10.
Sci Transl Med ; 8(359): 359ra132, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27708065

ABSTRACT

Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4+ T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4+ T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation.


Subject(s)
Allergens/immunology , Asthma/immunology , Hypersensitivity/immunology , Inflammation/immunology , Inflammation/pathology , Th2 Cells/immunology , Adult , Asthma/complications , Asthma/pathology , Cytokines , Humans , Hypersensitivity/complications , Hypersensitivity/pathology , Inflammation/complications , Lung/pathology , Mucus/metabolism , Muscle, Smooth/immunology , Muscle, Smooth/pathology , Phenotype
12.
Elife ; 52016 06 28.
Article in English | MEDLINE | ID: mdl-27351204

ABSTRACT

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.


Subject(s)
Gene Expression Regulation , Protein Processing, Post-Translational , Proteins/metabolism , Sequestosome-1 Protein/metabolism , Autophagy , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Flow Cytometry , Gene Targeting , Genetic Testing , Humans , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Proc Natl Acad Sci U S A ; 113(26): E3667-75, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27298372

ABSTRACT

The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.


Subject(s)
DNA Damage , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Repair , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Immunity ; 43(4): 715-26, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488816

ABSTRACT

CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.


Subject(s)
CARD Signaling Adaptor Proteins/physiology , Candidiasis, Invasive/immunology , Receptors, Angiotensin/physiology , Receptors, Endothelin/physiology , Ubiquitin-Protein Ligases/physiology , Adjuvants, Immunologic/pharmacology , Animals , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/deficiency , CARD Signaling Adaptor Proteins/genetics , Candidiasis, Invasive/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/prevention & control , Cytokines/biosynthesis , Dendritic Cells/immunology , Dendritic Cells/metabolism , Genes, Dominant , Genetic Predisposition to Disease , HEK293 Cells , HeLa Cells , Humans , Inflammatory Bowel Diseases/genetics , Mice , Mice, 129 Strain , Mice, Knockout , Protein Interaction Mapping , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Processing, Post-Translational , Protein Structure, Tertiary , Receptors, Angiotensin/chemistry , Receptors, Angiotensin/deficiency , Receptors, Endothelin/chemistry , Receptors, Endothelin/deficiency , Recombinant Fusion Proteins/metabolism , Signal Transduction , Specific Pathogen-Free Organisms , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
15.
Oncotarget ; 6(34): 36535-50, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26431492

ABSTRACT

Many host-factors are inducibly expressed during the development of inflammatory bowel disease (IBD), each having their unique properties, such as immune activation, bacterial clearance, and tissue repair/remodeling. Dysregulation/imbalance of these factors may have pathogenic effects that can contribute to colitis-associated cancer (CAC). Previous reports showed that IBD patients inducibly express colonic chitinase 3-like 1 (CHI3L1) that is further upregulated during CAC development. However, little is known about the direct pathogenic involvement of CHI3L1 in vivo. Here we demonstrate that CHI3L1 (aka Brp39) knockout (KO) mice treated with azoxymethane (AOM)/dextran sulphate sodium (DSS) developed severe colitis but lesser incidence of CAC as compared to that in wild-type (WT) mice. Highest CHI3L1 expression was found during the chronic phase of colitis, rather than the acute phase, and is essential to promote intestinal epithelial cell (IEC) proliferation in vivo. This CHI3L1-mediated cell proliferation/survival involves partial downregulation of the pro-apoptotic S100A9 protein that is highly expressed during the acute phase of colitis, by binding to the S100A9 receptor, RAGE (Receptor for Advanced Glycation End products). This interaction disrupts the S100A9-associated expression positive feedback loop during early immune activation, creating a CHI3L1hi S100A9low colonic environment, especially in the later phase of colitis, which promotes cell proliferation/survival of both normal IECs and tumor cells.


Subject(s)
Calgranulin B/metabolism , Chitinase-3-Like Protein 1/metabolism , Colonic Neoplasms/metabolism , Animals , Cell Proliferation/physiology , Chitinase-3-Like Protein 1/biosynthesis , Chitinase-3-Like Protein 1/genetics , Chronic Disease , Colitis/enzymology , Colitis/genetics , Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Models, Animal , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , S100 Calcium Binding Protein beta Subunit/metabolism
16.
Nat Commun ; 6: 7838, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26194095

ABSTRACT

The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response. Here we report the discovery of regulatory nodes controlling oxidative burst by functional screening of genes within loci linked to human inflammatory disease. Implementing a multi-omics approach, we define transcriptional, metabolic and ubiquitin-cycling nodes controlled by Rbpj, Pfkl and Rnf145, respectively. Furthermore, we implicate Rnf145 in proteostasis of the Nox2 complex by endoplasmic reticulum-associated degradation. Consequently, ablation of Rnf145 in murine macrophages enhances bacterial clearance, and rescues the oxidative burst defects associated with Ncf4 haploinsufficiency.


Subject(s)
Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , NADPH Oxidases/metabolism , Phagocytes/metabolism , Respiratory Burst , Animals , Base Sequence , Cell Line , Genomics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Molecular Sequence Data , NADPH Oxidase 2 , Phosphofructokinase-1/metabolism , Staphylococcus aureus
17.
Cell Rep ; 11(12): 1905-18, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26095365

ABSTRACT

The polymorphism ATG16L1 T300A, associated with increased risk of Crohn's disease, impairs pathogen defense mechanisms including selective autophagy, but specific pathway interactions altered by the risk allele remain unknown. Here, we use perturbational profiling of human peripheral blood cells to reveal that CLEC12A is regulated in an ATG16L1-T300A-dependent manner. Antibacterial autophagy is impaired in CLEC12A-deficient cells, and this effect is exacerbated in the presence of the ATG16L1(∗)300A risk allele. Clec12a(-/-) mice are more susceptible to Salmonella infection, supporting a role for CLEC12A in antibacterial defense pathways in vivo. CLEC12A is recruited to sites of bacterial entry, bacteria-autophagosome complexes, and sites of sterile membrane damage. Integrated genomics identified a functional interaction between CLEC12A and an E3-ubiquitin ligase complex that functions in antibacterial autophagy. These data identify CLEC12A as early adaptor molecule for antibacterial autophagy and highlight perturbational profiling as a method to elucidate defense pathways in complex genetic disease.


Subject(s)
Carrier Proteins/genetics , Crohn Disease/genetics , Lectins, C-Type/genetics , Receptors, Mitogen/genetics , Salmonella Infections/genetics , Alleles , Animals , Autophagy/genetics , Autophagy-Related Proteins , Crohn Disease/microbiology , Crohn Disease/pathology , Genetic Predisposition to Disease , Genomics , Humans , Lectins, C-Type/biosynthesis , Mice , Receptors, Mitogen/biosynthesis , Risk Factors , Salmonella/pathogenicity , Salmonella Infections/microbiology
18.
Eur J Clin Microbiol Infect Dis ; 34(5): 963-974, 2015 May.
Article in English | MEDLINE | ID: mdl-25579795

ABSTRACT

The induction of host defense against Candida species is initiated by recognition of the fungi by pattern recognition receptors and activation of downstream pathways that produce inflammatory mediators essential for infection clearance. In this study, we present complementary evidence based on transcriptome analysis, genetics, and immunological studies in knockout mice and humans that the cytosolic RIG-I-like receptor MDA5 (IFIH1) has an important role in the host defense against C. albicans. Firstly, IFIH1 expression in macrophages is specifically induced by invasive C. albicans hyphae, and patients suffering from chronic mucocutaneous candidiasis (CMC) express lower levels of MDA5 than healthy controls. Secondly, there is a strong association between missense variants in the IFIH1 gene (rs1990760 and rs3747517) and susceptibility to systemic Candida infections. Thirdly, cells from Mda5 knockout mice and human peripheral blood mononuclear cells (PBMCs) with different IFIH1 genotypes display an altered cytokine response to C. albicans. These data strongly suggest that MDA5 is involved in immune responses to Candida infection. As a receptor for viral RNA, MDA5 until now has been linked to antiviral host defense, but these novel studies show unexpected effects in antifungal immunity as well. Future studies are warranted to explore the potential of MDA5 as a novel target for immunotherapeutic strategies.


Subject(s)
Candida/immunology , Candidemia/immunology , DEAD-box RNA Helicases/metabolism , Adult , Animals , Cells, Cultured , Cohort Studies , DEAD-box RNA Helicases/deficiency , Disease Susceptibility , Humans , Interferon-Induced Helicase, IFIH1 , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Mice, Knockout , Polymorphism, Single Nucleotide
19.
Cell Rep ; 9(2): 752-66, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25373910

ABSTRACT

RNAi screens have implicated hundreds of host proteins as HIV-1 dependency factors (HDFs). While informative, these early studies overlap poorly due to false positives and false negatives. To ameliorate these issues, we combined information from the existing HDF screens together with new screens performed with multiple orthologous RNAi reagents (MORR). In addition to being traditionally validated, the MORR screens and the historical HDF screens were quantitatively integrated by the adaptation of an established analysis program, RIGER, for the collective interpretation of each gene's phenotypic significance. False positives were addressed by the removal of poorly expressed candidates through gene expression filtering, as well as with GESS, which identifies off-target effects. This workflow produced a quantitatively integrated network of genes that modulate HIV-1 replication. We further investigated the roles of GOLGI49, SEC13, and COG in HIV-1 replication. Collectively, the MORR-RIGER method minimized the caveats of RNAi screening and improved our understanding of HIV-1-host cell interactions.


Subject(s)
HIV-1/physiology , High-Throughput Screening Assays/methods , Host-Pathogen Interactions , RNA Interference , Virus Replication , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Algorithms , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins , HEK293 Cells , HeLa Cells , Humans , Jurkat Cells , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins
20.
PLoS Pathog ; 10(10): e1004485, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25356988

ABSTRACT

The anti-tuberculosis-vaccine Bacillus Calmette-Guérin (BCG) is the most widely used vaccine in the world. In addition to its effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects against certain forms of malignancy and against infections with unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are mediated through epigenetic reprogramming of monocytes, a process called trained immunity. In the present study we demonstrate that autophagy contributes to trained immunity induced by BCG. Pharmacologic inhibition of autophagy blocked trained immunity induced in vitro by stimuli such as ß-glucans or BCG. Single nucleotide polymorphisms (SNPs) in the autophagy genes ATG2B (rs3759601) and ATG5 (rs2245214) influenced both the in vitro and in vivo training effect of BCG upon restimulation with unrelated bacterial or fungal stimuli. Furthermore, pharmacologic or genetic inhibition of autophagy blocked epigenetic reprogramming of monocytes at the level of H3K4 trimethylation. Finally, we demonstrate that rs3759601 in ATG2B correlates with progression and recurrence of bladder cancer after BCG intravesical instillation therapy. These findings identify a key role of autophagy for the nonspecific protective effects of BCG.


Subject(s)
Autophagy , BCG Vaccine/therapeutic use , Mycobacterium bovis/immunology , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms/drug therapy , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Administration, Intravesical , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Autophagy/genetics , Autophagy/immunology , Autophagy-Related Protein 5 , Autophagy-Related Proteins , BCG Vaccine/administration & dosage , Cytokines/metabolism , Humans , Kaplan-Meier Estimate , Microtubule-Associated Proteins/genetics , Monocytes/immunology , Neoplasm Recurrence, Local , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/virology , Vaccination , Vesicular Transport Proteins/genetics , beta-Glucans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...