Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 1): 159791, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328261

ABSTRACT

The urban heat island (UHI) effect exacerbates the adverse impact of heat on human health. However, while the UHI effect is further intensified during extreme heat events, prior studies have rarely mapped the UHI effect during extreme heat events to assess its direct temperature impact on mortality. This study examined the UHI effect during extreme heat and non-extreme heat scenarios and compared their temperature-mortality associations in Hong Kong from 2010 to 2019. Four urban heat island degree hour (UHIdh) scenarios were mapped onto Hong Kong's tertiary planning units and classified into three levels (Low, Moderate, and High). We assessed the association between temperature and non-external mortality of populations living in each UHIdh level for the extreme heat/non-extreme heat scenarios during the 2010-2019 hot seasons. Our results showed substantial differences between the temperature-mortality associations in the three levels under the UHIdh extreme heat scenario (UHIdh_EH). While there was no evidence of increased mortality in Low UHIdh_EH areas, the mortality risk in Moderate and High UHIdh_EH areas were significantly increased during periods of hot temperature, with the High UHIdh_EH areas displaying almost double the risk (RR: 1.08, 95%CI: 1.03, 1.14 vs. RR: 1.05, 95 % CI: 1.01, 1.09). However, other non-extreme heat UHI scenarios did not demonstrate as prominent of a difference. When stratified by age, the heat effects were found in Moderate and High UHIdh_EH among the elderly aged 75 and above. Our study found a difference in the temperature-mortality associations based on UHI intensity and potential heat vulnerability of populations during extreme heat events. Preventive measures should be taken to mitigate heat especially in urban areas with high UHI intensity during extreme heat events, with particular attention and support for those prone to heat vulnerability, such as the elderly and poorer populations.


Subject(s)
Extreme Heat , Hot Temperature , Humans , Aged , Cities , Hong Kong/epidemiology , Extreme Heat/adverse effects , Seasons
2.
Environ Res ; 158: 753-758, 2017 10.
Article in English | MEDLINE | ID: mdl-28750344

ABSTRACT

Aerosols affect the insolation at ground and thus the Aerosol Optical Depth (AOD, a measure of aerosol pollution) plays an important role on the variation of the Physiological Equivalent Temperature (PET) at locations with different aerosol climatology. The aerosol effects upon PET were studied for the first time at four East Asian cities by coupling a radiative transfer model and a human thermal comfort model which were previously well evaluated. Evident with the MODIS and AERONET AOD observations, the aerosol pollution at Beijing and Seoul was higher than at Chiayi (Taiwan) and Hong Kong. Based on the AERONET data, with background AOD levels the selected temperate cities had similar clear-sky PET values especially during summertime, due to their locations at similar latitudes. This also applied to the sub-tropical cities. Increase in the AOD level to the seasonal average one led to an increase in diffuse solar radiation and in turn an increase in PET for people living in all the cities. However, the heavy aerosol loading environment in Beijing and Seoul in summertime (AODs > 3.0 in episodic situations) reduced the total radiative flux and thus PET values in the cities. On the contrary, relatively lower episodic AOD levels in Chiayi and Hong Kong led to strong diffuse and still strong direct radiative fluxes and resulted in higher PET values, relative to those with seasonal averaged AOD levels. People tended to feel from "hot" to "very hot" during summertime when the AOD reached their average levels from the background level. This implies that in future aerosol effects add further burden to the thermal environment apart from the effects of greenhouse gas-induced global warming. Understanding the interaction between ambient aerosols and outdoor thermal environment is an important first step for effective mitigation measures such as urban greening to reduce the risk of human heat stress. It is also critical to make cities more attractive and enhancing to human well-being to achieve enhancing sustainable urbanization as one of the principal goals for the Nature-based Solutions.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Beijing , Cities , Environmental Monitoring , Hong Kong , Humans , Models, Biological , Models, Theoretical , Seoul , Taiwan , Thermosensing
SELECTION OF CITATIONS
SEARCH DETAIL