Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 20(1): 32, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814278

ABSTRACT

Cardiometabolic diseases are associated with low-grade inflammation early in life and persists into old age. The long latency period presents opportunities for early detection, lifestyle modification and intervention. However, the performance of conventional biomarker assays to detect low-grade inflammation has been variable, particularly for early-stage cardiometabolic disorder including prediabetes and subclinical atherosclerotic vascular inflammation. During the last decade, the application of nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of biofluids in translational and epidemiological research has advanced to a stage approaching clinical application. Proton (1H)-NMR profiling induces no destructible physical changes to specimens, and generates quantitative signals from deconvoluted spectra that are highly repeatable and reproducible. Apart from quantitative analysis of amino acids, lipids/lipoproteins, metabolic intermediates and small proteins, 1H-NMR technology is unique in being able to detect composite signals of acute-phase and low-grade inflammation indicated by glycosylated acetyls (GlycA) and N-acetylneuraminic acid (sialic acid) moieties (GlycB). Different from conventional immunoassays that target epitopes and are susceptible to conformational variation in protein structure and binding, GlycA and GlycB signals are stable over time, and maybe complementary as well as superior to high-sensitivity C-reactive protein and other inflammatory cytokines. Here we review the physicochemical principles behind 1H-NMR profiling of GlycA and GlycB, and the available evidence supporting their potential clinical application for the prediction of incident (pre)diabetes, cardiovascular disease, and adverse outcomes.

2.
Biomolecules ; 13(8)2023 08 16.
Article in English | MEDLINE | ID: mdl-37627317

ABSTRACT

Branched-chain amino acids are critical metabolic intermediates that can indicate increased risk of cardiometabolic disease when levels are elevated or, alternatively, suggest sufficient mitochondrial energy metabolism and reserve in old age. The interpretation of BCAA levels can be context-dependent, and it remains unclear whether abnormal levels can inform prognosis. This prospective longitudinal study aimed to determine the interrelationship between mortality hazard and fasting serum BCAA levels among older men and women aged ≥65 years with or without hypertension and diabetes mellitus. At baseline (0Y), fasting serum BCAA concentration in 2997 community-living older men and women were measured. Approximately 14 years later (14Y), 860 study participants returned for repeat measurements. Deaths were analysed and classified into cardiovascular and non-cardiovascular causes using International Classification of Diseases codes. Survival analysis and multivariable Cox regression were performed. During a median follow-up of 17Y, 971 (78.6%) non-cardiovascular and 263 (21.4%) cardiovascular deaths occurred among 1235 (41.2%) deceased (median age, 85.8 years [IQR 81.7-89.7]). From 0Y to 14Y, BCAA levels declined in both sexes, whereas serum creatinine concentration increased (both p < 0.0001). In older adults without hypertension or diabetes mellitus, the relationship between mortality hazard and BCAA level was linear and above-median BCAA levels were associated with improved survival, whereas in the presence of cardiometabolic disease the relationship was U-shaped. Overall, adjusted Cox regression determined that each 10% increment in BCAA concentration was associated with a 7% (p = 0.0002) and 16% (p = 0.0057) reduction in mortality hazard estimated at 0Y and 14Y, respectively. Our findings suggested that abnormally high or low (dyshomeostatic) BCAA levels among older adults with hypertension and/or diabetes mellitus were associated with increased mortality, whereas in those with neither disease, increased BCAA levels was associated with improved survival, particularly in the oldest-old.


Subject(s)
Diabetes Mellitus , Hypertension , Male , Humans , Female , Aged , Aged, 80 and over , Follow-Up Studies , Longitudinal Studies , Prospective Studies , Amino Acids, Branched-Chain , Creatinine
SELECTION OF CITATIONS
SEARCH DETAIL
...