Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell Rep Med ; 5(4): 101507, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631289

ABSTRACT

The precise identities of bone marrow resident cells contributing to AML relapse are not fully known. Hollands et al. report early evidence to support the existence of an aberrant monocytic cell population that appears to promote LSC expansion after cytarabine treatment.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Bone Marrow Cells , Recurrence
3.
Rheumatology (Oxford) ; 62(7): 2444-2452, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36469303

ABSTRACT

OBJECTIVES: This study investigates longitudinal patterns, predictors and long-term impact of pain in axial spondyloarthritis (axSpA), using clinical and self-tracking data. METHODS: The presence of multisite pain (MSP), affecting at least six of nine body regions using a Margolis pain drawing, and subsequent chronic widespread pain (CWP), MSP at more than one timepoint, was assessed in a cohort of axSpA patients. Incident MSP (MSP at two consecutive visits or more), intermittent MSP (MSP at two or more non-consecutive visits) and persistent MSP (MSP at each visit) were described. Demographic, clinical and self-tracking measures were compared for the CWP vs non-CWP groups using Students t test, Wilcoxon-Mann-Whitney and χ2 test for normal, non-normal and categorical data, respectively. Predictors of CWP were evaluated using logistic regression modelling. RESULTS: A total of 136 patients, mean clinical study duration of 120 weeks (range 27-277 weeks) were included, with sufficient self-tracking data in 97 patients. Sixty-eight (50%) patients reported MSP during at least one clinical visit: eight (6%) incident MSP; 16 (12%) persistent MSP; and 44 (32%) intermittent MSP. Forty-six (34%) of the cohort had CWP. All baseline measures of disease activity, function, quality of life, sleep disturbance, fatigue and overall activity impairment were significant predictors of the development of CWP. BASDAI and BASFI scores were significantly higher in those with CWP and self-tracking data revealed significantly worse pain, fatigue, sleep quality and stress. CONCLUSIONS: The development of CWP is predicted by higher levels of disease activity and burden at baseline. It also impacts future disease activity and wellbeing.


Subject(s)
Axial Spondyloarthritis , Chronic Pain , Humans , Cohort Studies , Quality of Life , Chronic Pain/epidemiology , Chronic Pain/etiology , Fatigue/epidemiology , Fatigue/etiology
4.
Hepatology ; 78(1): 212-224, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36181700

ABSTRACT

BACKGROUND AND AIMS: Relative roles of HSCs and portal fibroblasts in alcoholic hepatitis (AH) are unknown. We aimed to identify subpopulations of collagen type 1 alpha 1 (Col1a1)-expressing cells in a mouse AH model by single-cell RNA sequencing (scRNA-seq) and filtering the cells with the HSC (lecithin retinol acyltransferase [Lrat]) and portal fibroblast (Thy-1 cell surface antigen [Thy1] and fibulin 2 [Fbln2]) markers and vitamin A (VitA) storage. APPROACH AND RESULTS: Col1a1-green fluorescent protein (GFP) mice underwent AH, CCl 4 , and bile duct ligation (BDL) procedures to have comparable F1-F2 liver fibrosis. Col1a1-expressing cells were sorted via FACS by VitA autofluorescence and GFP for single-cell RNA sequencing. In AH, approximately 80% of Lrat+Thy1-Fbln2- activated HSCs were VitA-depleted (vs. ~13% in BDL and CCl 4 ). Supervised clustering identified a subset co-expressing Lrat and Fbln2 (Lrat+Fbln2+), which expanded 44-fold, 17-fold, and 1.3-fold in AH, BDL, and CCl 4 . Lrat+Fbln2+ cells had 3-15-times inductions of profibrotic, myofibroblastic, and immunoregulatory genes versus Lrat+Fbln2- cells, but 2-4-times repressed HSC-selective genes. AH activated HSCs had up-regulated inflammatory (chemokine [C-X-C motif] ligand 2 [Cxcl2], chemokine [C-C motif] ligand 2), antimicrobial (Il-33, Zc3h12a), and antigen presentation (H2-Q6, H2-T23) genes versus BDL and CCl 4 . Computational deconvolution of AH versus normal human bulk-liver RNA-sequencing data supported an expansion of LRAT+FBLN2+ cells in AH; AH patient liver immunohistochemistry showed FBLN2 staining along fibrotic septa enriched with LRAT+ cells; and in situ hybridization confirmed co-expression of FBLN2 with CXCL2 and/or human leukocyte antigen E in patient AH. Finally, HSC tracing in Lrat-Cre;Rosa26mTmG mice detected GFP+FBLN2+ cells in AH. CONCLUSION: A highly profibrotic, inflammatory, and immunoregulatory Lrat+Fbln2+ subpopulation emerges from HSCs in AH and may contribute to the inflammatory and immunoreactive nature of AH.


Subject(s)
Hepatitis, Alcoholic , Mice , Humans , Animals , Hepatitis, Alcoholic/pathology , Ligands , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Acyltransferases/metabolism , Disease Models, Animal
5.
EJHaem ; 3(3): 873-884, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051057

ABSTRACT

A 17-gene stemness (LSC17) score determines risk in acute myeloid leukaemia patients treated with standard chemotherapy regimens. The present study further analysed the impact of the LSC17 score at diagnosis on outcomes following allogeneic haematopoietic cell transplantation (HCT). Out of 452 patients with available LSC17 score, 123 patients received allogeneic HCT. Transplant outcomes, including overall (OS), leukaemia-free survival (LFS), relapse incidence (RI) and non-relapse mortality (NRM), were compared according to the LSC17 scored group. The patients with a low LSC17 score had higher OS (56.2%) and LFS (54.4%) at 2 years compared to patients with high LSC17 score (47.2%, p = 0.0237 for OS and 46.0%, p = 0.0181 for LFS). The low LSC17 score group also had a lower relapse rate at 2 years (12.7%) compared to 25.3% in the high LSC17 score group (p = 0.017), but no difference in NRM (p = 0.674). Worse outcomes in the high LSC17 score group for OS, LFS and relapse were consistently observed across all stratified sub-groups. The use of more intensive conditioning did not improve outcomes for either group. In contrast, chronic graft-versus-host-disease was associated with more favourable outcomes in both groups. The 17-gene stemness score is highly prognostic for survival and relapse risk following allogeneic HCT.

6.
Genome Med ; 14(1): 67, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739588

ABSTRACT

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS: Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS: Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS: Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Acetyl Coenzyme A/metabolism , Animals , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat/adverse effects , Epigenome , Fructose/adverse effects , Fructose/metabolism , Histones/metabolism , Humans , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics
7.
Blood Adv ; 6(3): 1064-1073, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34872104

ABSTRACT

Leukemia stem cells (LSCs) are linked to relapse in acute myeloid leukemia (AML). The LSC17 gene expression score robustly captures LSC stemness properties in AML and can be used to predict survival outcomes and response to therapy, enabling risk-adapted, upfront treatment approaches. The LSC17 score was developed and validated in a research setting. To enable widespread use of the LSC17 score in clinical decision making, we established a laboratory-developed test (LDT) for the LSC17 score that can be deployed broadly in clinical molecular diagnostic laboratories. We extensively validated the LSC17 LDT in a College of American Pathologists/Clinical Laboratory Improvements Act (CAP/CLIA)-certified laboratory, determining specimen requirements, a synthetic control, and performance parameters for the assay. Importantly, we correlated values from the LSC17 LDT to clinical outcome in a reference cohort of patients with AML, establishing a median assay value that can be used for clinical risk stratification of individual patients with newly diagnosed AML. The assay was established in a second independent CAP/CLIA-certified laboratory, and its technical performance was validated using an independent cohort of patient samples, demonstrating that the LSC17 LDT can be readily implemented in other settings. This study enables the clinical use of the LSC17 score for upfront risk-adapted management of patients with AML.


Subject(s)
Laboratories, Clinical , Leukemia, Myeloid, Acute , Cohort Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/metabolism , Risk Assessment
8.
BMJ Support Palliat Care ; 12(e5): e641-e645, 2022 Nov.
Article in English | MEDLINE | ID: mdl-30470701

ABSTRACT

OBJECTIVES: When active treatment is no longer in the best interests of the patient, redirection of care to palliation is an important transition. We review, within a tertiary neonatal intensive care unit (NICU), the journey leading to the decision to redirect care, the means of symptom control and the provision of psychosocial supports. METHODS: A retrospective review of all 166 deaths of NICU-affiliated patients during a 10- year epoch. Medical notes were reviewed, and the provision and type of, or barriers to, effective palliative care was defined. RESULTS: Extreme prematurity accounted for 71/145 (49%) of deaths with relatively high proportions of Maori 17/71 (25%) and Pacific Islanders 9/71 (13%). Almost all eligible infants received some form of palliation. Transition from curative to palliative care was refused by the family in a single case. Median time from decision to redirect care until first recorded action was 80 min, and median time from action until death was 60 min. The majority of infants received some form of comfort cares, (128/166) most commonly morphine (94/128, 73%). Three infants had documented seizure activity or respiratory distress but did not receive any pharmacological intervention. Psychosocial supports were offered in 98/145 (67%) of cases, but only 71/145 (49%) of families were formally offered an opportunity to discuss the infant's clinical course after their death. CONCLUSIONS: Clinical documentation of care plans was often incomplete, potentially leading to inconsistent delivery of care, increased risk of symptom breakthrough and/or inadequate psychosocial supports for family. Formal individualised palliative care plans are under development to standardise documentation and improve therapeutic and psychosocial interventions available to the infant and their family.


Subject(s)
Hospice and Palliative Care Nursing , Intensive Care Units, Neonatal , Infant, Newborn , Infant , Humans , Palliative Care , Patient Comfort , Morphine Derivatives
9.
Rheumatol Adv Pract ; 5(3): rkab082, 2021.
Article in English | MEDLINE | ID: mdl-34926981

ABSTRACT

OBJECTIVES: Our objective was to explore daily self-reported experiences of axial SpA (axSpA) flare based on data entered into the Project Nightingale smartphone app (www.projectnightingale.org), between 5 April 2018 and 1 April 2020. METHODS: Paired t-tests were conducted for mean_flare_on and mean_flare_off scores for each recorded variable. The mean estimated difference between flare and non-flare values for each variable was calculated with 95% CIs. Mean, S.d. and range were reported for flare duration and frequency. Participants with ≥10 days of data entry were included for affinity propagation cluster analysis. Baseline characteristics and mean flare on vs mean flare off values were reported for each cluster. Welch's t-test was used to assess differences between clusters. RESULTS: A total of 143/189 (75.7%) participants recorded at least one flare. Each flare lasted a mean of 4.30 days (S.d. 6.82, range 1-78), with a mean frequency of once every 35.32 days (S.d. 65.73, range 1-677). Significant relationships were identified between flare status and variable scores. Two clusters of participants were identified with distinct flare profiles. Group 1 experienced less severe worsening of symptoms during flare in comparison to group 2 (P < 0.01). However, they experienced significantly longer flare duration (7.2 vs 3.5 days; P < 0.01), perhaps indicating a prolonged, yet less intense flare experience. Groups were similar in terms of flare frequency and clinical characteristics. CONCLUSIONS: Two clusters of participants were identified with distinct flare experiences but similar baseline clinical characteristics. Smartphone technologies capture subtle changes in disease experience not currently considered in clinical practice.

10.
Nature ; 598(7881): 473-478, 2021 10.
Article in English | MEDLINE | ID: mdl-34646017

ABSTRACT

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Subject(s)
Liver Diseases/genetics , Liver Diseases/metabolism , Liver/metabolism , Mutation/genetics , Active Transport, Cell Nucleus/genetics , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Chronic Disease , Cohort Studies , Fatty Acids, Nonesterified/metabolism , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Insulin Resistance , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Male , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
11.
Blood Cancer Discov ; 2(1): 32-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33458693

ABSTRACT

Acute myeloid leukemia (AML) is a caricature of normal hematopoiesis, driven from leukemia stem cells (LSC) that share some hematopoietic stem cell (HSC) programs including responsiveness to inflammatory signaling. Although inflammation dysregulates mature myeloid cells and influences stemness programs and lineage determination in HSC by activating stress myelopoiesis, such roles in LSC are poorly understood. Here, we show that S1PR3, a receptor for the bioactive lipid sphingosine-1-phosphate, is a central regulator which drives myeloid differentiation and activates inflammatory programs in both HSC and LSC. S1PR3-mediated inflammatory signatures varied in a continuum from primitive to mature myeloid states across AML patient cohorts, each with distinct phenotypic and clinical properties. S1PR3 was high in LSC and blasts of mature myeloid samples with linkages to chemosensitivity, while S1PR3 activation in primitive samples promoted LSC differentiation leading to eradication. Our studies open new avenues for therapeutic target identification specific for each AML subset.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Sphingosine-1-Phosphate Receptors , Cell Differentiation , Hematopoietic Stem Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism
12.
Blood ; 137(5): 661-677, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33197925

ABSTRACT

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Subject(s)
Acetamides/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Isoindoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Piperidones/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Acetamides/therapeutic use , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Humans , Isoindoles/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neoplastic Stem Cells/enzymology , Nuclear Factor 45 Protein/physiology , Nuclear Factor 90 Proteins/physiology , Peptide Termination Factors/metabolism , Piperidones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Proteolysis , Small Molecule Libraries , Stress, Physiological , TOR Serine-Threonine Kinases/physiology , U937 Cells , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
13.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: mdl-33298453

ABSTRACT

Sensitive mutation detection by next-generation sequencing is critical for early cancer detection, monitoring minimal/measurable residual disease (MRD), and guiding precision oncology. Nevertheless, because of artifacts introduced during library preparation and sequencing, the detection of low-frequency variants at high specificity is problematic. Here, we present Espresso, an error suppression method that considers local sequence features to accurately detect single-nucleotide variants (SNVs). Compared to other advanced error suppression techniques, Espresso consistently demonstrated lower numbers of false-positive mutation calls and greater sensitivity. We demonstrated Espresso's superior performance in detecting MRD in the peripheral blood of patients with acute myeloid leukemia (AML) throughout their treatment course. Furthermore, we showed that accurate mutation calling in a small number of informative genomic loci might provide a cost-efficient strategy for pragmatic risk prediction of AML development in healthy individuals. More broadly, we aim for Espresso to aid with accurate mutation detection in many other research and clinical settings.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics
14.
Blood ; 133(20): 2198-2211, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30796022

ABSTRACT

There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.


Subject(s)
Gene Expression Regulation, Leukemic , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Cycle Checkpoints , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Up-Regulation , p21-Activated Kinases/analysis
15.
Leukemia ; 33(2): 348-357, 2019 02.
Article in English | MEDLINE | ID: mdl-30089916

ABSTRACT

Despite constant progress in prognostic risk stratification, children with acute myeloid leukemia (AML) still relapse. Treatment failure and subsequent relapse have been attributed to acute myeloid leukemia-initiating cells (LSC), which harbor stem cell properties and are inherently chemoresistant. Although pediatric and adult AML represent two genetically very distinct diseases, we reasoned that common LSC gene expression programs are shared and consequently, the highly prognostic LSC17 signature score recently developed in adults may also be of clinical interest in childhood AML. Here, we demonstrated prognostic relevance of the LSC17 score in pediatric non-core-binding factor AML using Nanostring technology (ELAM02) and RNA-seq data from the NCI (TARGET-AML). AML were stratified by LSC17 quartile groups (lowest 25%, intermediate 50% and highest 25%) and children with low LSC17 score had significantly better event-free survival (EFS: HR = 3.35 (95%CI = 1.64-6.82), P < 0.001) and overall survival (OS: HR = 3.51 (95%CI = 1.38-8.92), P = 0.008) compared with patients with high LSC17 scores. More importantly, the high LSC17 score was an independent negative EFS and OS prognosticator determined by multivariate Cox model analysis (EFS: HR = 3.42 (95% CI = 1.63-7.16), P = 0.001; OS HR = 3.02 (95%CI = 1.16-7.85), P = 0.026). In conclusion, we have demonstrated the broad applicability of the LSC17 score in the clinical management of AML by extending its prognostic relevance to pediatric AML.


Subject(s)
Biomarkers, Tumor/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Transcriptome , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Infant , Infant, Newborn , Leukemia, Myeloid, Acute/classification , Male , Neoplastic Stem Cells/metabolism , Prognosis , Survival Rate
16.
Cell Rep ; 25(5): 1109-1117.e5, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30380403

ABSTRACT

Lifelong maintenance of the blood system requires equilibrium between clearance of damaged hematopoietic stem cells (HSCs) and long-term survival of the HSC pool. Severe perturbations of cellular homeostasis result in rapid HSC loss to maintain clonal purity. However, normal homeostatic processes can also generate lower-level stress; how HSCs survive these conditions remains unknown. Here we show that the integrated stress response (ISR) is uniquely active in HSCs and facilitates their persistence. Activating transcription factor 4 (ATF4) mediates the ISR and is highly expressed in HSCs due to scarcity of the eIF2 translation initiation complex. Amino acid deprivation results in eIF2α phosphorylation-dependent upregulation of ATF4, promoting HSC survival. Primitive acute myeloid leukemia (AML) cells also display eIF2 scarcity and ISR activity marks leukemia stem cells (LSCs) in primary AML samples. These findings identify a link between the ISR and stem cell survival in the normal and leukemic contexts.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/metabolism , Leukemia/metabolism , Stress, Physiological , Activating Transcription Factor 4/metabolism , Animals , Cell Survival , Cytoprotection , Eukaryotic Initiation Factor-2/metabolism , Fetal Blood/cytology , Genes, Reporter , Humans , Male , Mice, Inbred NOD , Mice, SCID , Multipotent Stem Cells/metabolism , Phosphorylation , Up-Regulation , Valine/deficiency
17.
Nature ; 559(7714): 400-404, 2018 07.
Article in English | MEDLINE | ID: mdl-29988082

ABSTRACT

The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)4-8. Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.


Subject(s)
Genetic Predisposition to Disease , Health , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Age Factors , Aged , Disease Progression , Electronic Health Records , Female , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Models, Genetic , Mutagenesis , Prevalence , Risk Assessment
18.
Blood Cancer J ; 8(6): 52, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29921955

ABSTRACT

Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug-gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Apoptosis/genetics , Biomarkers , Cell Cycle/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Computational Biology/methods , Cytarabine/pharmacology , Drug Discovery , Drug Screening Assays, Antitumor , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Molecular Targeted Therapy , Neoplastic Stem Cells/drug effects , Transcriptome
19.
Nature ; 558(7711): E4, 2018 06.
Article in English | MEDLINE | ID: mdl-29769714

ABSTRACT

In the originally published version of this Letter, ref. 43 was erroneously provided twice. In the 'Estimation of relative cell-type-specific composition of AML samples' section in the Methods, the citation to ref. 43 after the GEO dataset GSE24759 is correct. However, in the 'Mice' section of the Methods, the citation to ref. 43 after 'TAMERE' should have been associated with a new reference1. The original Letter has been corrected online (with the new reference included as ref. 49).

20.
Nature ; 553(7689): 515-520, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29342133

ABSTRACT

The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Leukemia/genetics , Leukemia/pathology , Multigene Family/genetics , Animals , B-Lymphocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Down-Regulation , Female , Gene Deletion , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/cytology , Myeloid Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Sequence Deletion , Survival Analysis , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...