Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(22): 15416-15432, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36367089

ABSTRACT

The development of ligands for biological targets is critically dependent on the identification of sites on proteins that bind molecules with high affinity. A set of compounds, called FragLites, can identify such sites, along with the interactions required to gain affinity, by X-ray crystallography. We demonstrate the utility of FragLites in mapping the binding sites of bromodomain proteins BRD4 and ATAD2 and demonstrate that FragLite mapping is comparable to a full fragment screen in identifying ligand binding sites and key interactions. We extend the FragLite set with analogous compounds derived from amino acids (termed PepLites) that mimic the interactions of peptides. The output of the FragLite maps is shown to enable the development of ligands with leadlike potency. This work establishes the use of FragLite and PepLite screening at an early stage in ligand discovery allowing the rapid assessment of tractability of protein targets and informing downstream hit-finding.


Subject(s)
Nuclear Proteins , Transcription Factors , Ligands , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Protein Domains , Binding Sites , Crystallography, X-Ray , Peptides/metabolism , Protein Binding , Cell Cycle Proteins/metabolism
2.
J Med Chem ; 64(22): 16609-16625, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34762429

ABSTRACT

FTO catalyzes the Fe(II) and 2-oxoglutarate (2OG)-dependent modification of nucleic acids, including the demethylation of N6-methyladenosine (m6A) in mRNA. FTO is a proposed target for anti-cancer therapy. Using information from crystal structures of FTO in complex with 2OG and substrate mimics, we designed and synthesized two series of FTO inhibitors, which were characterized by turnover and binding assays, and by X-ray crystallography with FTO and the related bacterial enzyme AlkB. A potent inhibitor employing binding interactions spanning the FTO 2OG and substrate binding sites was identified. Selectivity over other clinically targeted 2OG oxygenases was demonstrated, including with respect to the hypoxia-inducible factor prolyl and asparaginyl hydroxylases (PHD2 and FIH) and selected JmjC histone demethylases (KDMs). The results illustrate how structure-based design can enable the identification of potent and selective 2OG oxygenase inhibitors and will be useful for the development of FTO inhibitors for use in vivo.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Design , Antineoplastic Agents/chemistry , Crystallography, X-Ray , Histone Demethylases/metabolism , Humans , Mixed Function Oxygenases/metabolism , Structure-Activity Relationship
3.
Nucleic Acids Res ; 48(10): 5366-5382, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32324216

ABSTRACT

Resistance to androgen receptor (AR) targeting therapeutics in prostate cancer (PC) is a significant clinical problem. Mechanisms by which this is accomplished include AR amplification and expression of AR splice variants, demonstrating that AR remains a key therapeutic target in advanced disease. For the first time we show that IKBKE drives AR signalling in advanced PC. Significant inhibition of AR regulated gene expression was observed upon siRNA-mediated IKBKE depletion or pharmacological inhibition due to inhibited AR gene expression in multiple cell line models including a LNCaP derivative cell line resistant to the anti-androgen, enzalutamide (LNCaP-EnzR). Phenotypically, this resulted in significant inhibition of proliferation, migration and colony forming ability suggesting that targeting IKBKE could circumvent resistance to AR targeting therapies. Indeed, pharmacological inhibition in the CWR22Rv1 xenograft mouse model reduced tumour size and enhanced survival. Critically, this was validated in patient-derived explants where enzymatic inactivation of IKBKE reduced cell proliferation and AR expression. Mechanistically, we provide evidence that IKBKE regulates AR levels via Hippo pathway inhibition to reduce c-MYC levels at cis-regulatory elements within the AR gene. Thus, IKBKE is a therapeutic target in advanced PC suggesting repurposing of clinically tested IKBKE inhibitors could be beneficial to castrate resistant PC patients.


Subject(s)
I-kappa B Kinase/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Androgen/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , I-kappa B Kinase/antagonists & inhibitors , Male , Mice, Nude , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL