Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Divers ; 46(1): 91-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343590

ABSTRACT

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.

2.
Front Plant Sci ; 14: 1197137, 2023.
Article in English | MEDLINE | ID: mdl-38078105

ABSTRACT

Understanding how anthropogenic disturbances affect the genetics of tree species is crucial; however, how tree populations in the wild can tolerate these activities remains unexplored. Given the ongoing and intensifying anthropogenic disturbances, we conducted a study using Ailanthus altissima to gain new insights into the effects of these pressures on genetic variability in undisturbed and disturbed forests. We analyzed the genetic diversity and population structure of A. altissima using nuclear (EST-SSR) and chloroplast (cpSSR) microsatellite markers. The genetic diversity across the 34 studied populations based on EST-SSRs was found to be moderate to high (nH E = 0.547-0.772) with a mean nH E of 0.680. Bayesian clustering, principal coordinate analysis (PCoA), and discriminant analysis of principal component (DAPC) consistently divided the populations into three distinct groups based on EST-SSRs. Allelic combinations of 92 different chloroplast size variants from 10 cpSSR loci resulted in a total of 292 chloroplast haplotypes. The mean haplotype diversity was relatively high (cpH E = 0.941), and the mean haplotype richness was 2.690, averaged across the 34 populations of A. altissima. Values of F ST in A. altissima from chloroplast and nuclear markers were 0.509 and 0.126, respectively. Modeling results showed evidence for population range contraction during the Last Glacial Maximum with subsequent population expansion in the Holocene and the future. Although genetic variation did not differ substantially across disturbed and undisturbed sites, there were small trends indicating higher genetic diversity and population bottlenecks in disturbed forests. As a result, disrupted ecosystems might display surprising genetic patterns that are difficult to predict and should not be overlooked.

3.
Environ Monit Assess ; 196(1): 62, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112854

ABSTRACT

Lippia javanica is a typical indigenous plant species mostly found in the higher elevation or mountainous regions in southern, central, and eastern Africa. The ongoing utilization of the species for ethnobotanical applications and traditional uses, coupled with the changing climate, increases the risk of a potential reduction in its geographic distribution range in the region. Herein, we utilized the MaxEnt species distribution modelling to build the L. javanica distribution models in tropical and subtropical African regions for current and future climates. The MaxEnt models were calibrated and fitted using 286 occurrence records and six environmental variables. Temperatures, including temperature seasonality [Bio 4] and the maximum temperature of the warmest month [Bio 5], were observed to be the most significant determinants of L. javanica's distribution. The current projected range for L. javanica was estimated to be 2,118,457 km2. Future model predictions indicated that L. javanica may increase its geographic distribution in western areas of the continent and regions around the equator; however, much of the geographic range in southern Africa may shift southwards, causing the species to lose portions of the northern limits of the habitat range. These current findings can help increase the conservation of L. javanica and other species and combat localized species loss induced by climate change and human pressure. We also emphasize the importance of more investigations and enhanced surveillance of traditionally used plant species in regions that are acutely susceptible to climate change.


Subject(s)
Climate Change , Lippia , Humans , Environmental Monitoring , Africa , Ecosystem , Plants
4.
Heliyon ; 9(6): e17405, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37416643

ABSTRACT

Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.

5.
Plant Divers ; 44(5): 468-480, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36187550

ABSTRACT

Understanding the influence of environmental covariates on plant distribution is critical, especially for aquatic plant species. Climate change is likely to alter the distribution of aquatic species. However, knowledge of this change on the burden of aquatic macroorganisms is often fraught with difficulty. Ottelia, a model genus for studying the evolution of the aquatic family Hydrocharitaceae, is mainly distributed in slow-flowing creeks, rivers, or lakes throughout pantropical regions in the world. Due to recent rapid climate changes, natural Ottelia populations have declined significantly. By modeling the effects of climate change on the distribution of Ottelia species and assessing the degree of niche similarity, we sought to identify high suitability regions and help formulate conservation strategies. The models use known background points to determine how environmental covariates vary spatially and produce continental maps of the distribution of the Ottelia species in Africa. Additionally, we estimated the possible influences of the optimistic and extreme pessimistic representative concentration pathways scenarios RCP 4.5 and RCP 8.5 for the 2050s. Our results show that the distinct distribution patterns of studied Ottelia species were influenced by topography (elevation) and climate (e.g., mean temperature of driest quarter, annual precipitation, and precipitation of the driest month). While there is a lack of accord in defining the limiting factors for the distribution of Ottelia species, it is clear that water-temperature conditions have promising effects when kept within optimal ranges. We also note that climate change will impact Ottelia by accelerating fragmentation and habitat loss. The assessment of niche overlap revealed that Ottelia cylindrica and O . verdickii had slightly more similar niches than the other Ottelia species. The present findings identify the need to enhance conservation efforts to safeguard natural Ottelia populations and provide a theoretical basis for the distribution of various Ottelia species in Africa.

6.
Plants (Basel) ; 11(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890508

ABSTRACT

The International Panel on Climate Change (IPCC) projects a global temperature rise of 4.3 ± 0.7 °C by 2100 and an extinction of 8.5% in one out of every six species. Australia's aquatic ecosystem is no exception; habitat loss, fragmentation, and loss of biodiversity are being experienced. As the center for Nymphaea species distribution, it presents the culturally, ecologically, and scientifically important genus as the best candidate for habitat suitability assessment in climate change, whose habitat suitability is presumed to decline. The models were run according to the maximum entropy (MaxEnt) method, using one general circulation model (GCM). Projections were made for the current, past, and future in medium (4.5) and high (8.5) representative concentration pathways. Significantly, bio2 and bio15 were highly preferred among the species. Less distribution was noted in West Australia compared to the north, east, and south of the continent, while north of the continent in Western Australia, Northern Territory, and Queensland indicate more habitat contractions compared to the east and southeast of Queensland and New South Wales, although it receives high precipitation. Generally, the species respond variably to both temperature and precipitation variables which is a key species response factor for planners and decision makers in species habitat and biodiversity conservation.

7.
Mol Biol Rep ; 49(2): 917-929, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34741709

ABSTRACT

BACKGROUND: Understanding genetic variation is critical for the protection and maintenance of fragmented and highly disturbed habitats. The Taita Hills of Kenya are the northernmost part of the Eastern Arc Mountains and have been identified as one of the world's top ten biodiversity hotspots. Over the past century the current forests in the Taita Hills have become highly fragmented. In order to appraise the influence of anthropological disturbance and fragmentation on plant species in these mountains, we studied the genetic variation and population structure of Dodonaea viscosa (L.) Jacq. (Sapindaceae), using newly developed microsatellite (SSR) markers, combined with ecological niche modelling analyses (ENMs). METHODS AND RESULTS: We utilized the Illumina paired-end technology to sequence D. viscosa's genome and developed its microsatellite markers. In total, 646,428 sequences were analyzed, and 49,836 SSRs were identified from 42,638 sequences. A total of 18 out of 25 randomly selected primer pairs were designed to test polymorphism among 92 individuals across eight populations. The average observed heterozygosity and expected heterozygosity ranged from 0.119 to 0.982 and from 0.227 to 0.691, respectively. Analysis of molecular variance (AMOVA) revealed 78% variance within populations and only 20% among the eight populations. According to ENM results, D. viscosa's suitable habitats have been gradually reducing since the last glacial maximum (LGM), and the situation will worsen under the extreme pessimist scenario of (representative concentration pathway) RCP 8.5. Moreover, genetic diversity was significantly greater in larger fragments. CONCLUSIONS: In the present study, we successfully developed and tested SSR markers for D. viscosa. Study results indicate that fragmentation would constitute a severe threat to plant forest species. Therefore, urgent conservation management of smaller fragmented patches is necessary to protect this disturbed region and maintain the genetic resources.


Subject(s)
Microsatellite Repeats/genetics , Sapindaceae/genetics , Conservation of Natural Resources , Forests , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing/methods , Kenya , Polymorphism, Genetic/genetics
8.
Plant Divers ; 42(5): 334-342, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33134616

ABSTRACT

Members of the aquatic plant genus Aponogeton are widely used commercially in aquariums because of their variable leaf shape and unique inflorescences. However, due to extensive similarity between species in this genus, morphological characters are generally inadequate for taxonomic classification. Currently, molecular makers available for taxonomic and phylogenetic studies of Aponogeton are limited. One approach to clarifying relationships between species in these complex groups is to use divergence hotspot regions within the genome. Here, we sequenced and analyzed the plastomes of five Aponogeton species collected from China, Zambia, and Kenya, and subsequently screened these plastomes for divergent DNA hotspots. The five plastomes are circular structures with sizes ranging from 154,167 bp to 154,860 bp. The Large and the Small Single Copies are separated by two Inverted Repeats. One hundred and thirteen unique genes were identified including 79 protein-coding, 30 tRNA, and four rRNA genes. We found that the most abundant repeats in all but one species were mononucleotide repeats (A/T) and that there were 23 potential RNA ending sites. Interestingly, a ~3 kb inversion, which includes the accD gene, was detected within the Asian species of Aponogeton. The inversion may be related to more frequent exchanges between this region and the nuclear genome. Furthermore, we detected mutational hotspot sites among the five Aponogeton species. Three of these hotspots are intergenic spacer regions (accD-psaI, rbcL-accD and trnH-GUG-psbA) that might be suitable for use as barcodes to resolve intra-generic relationships. We also identified four highly variable protein-coding genes (ccsA, rpl22, rps16 and ycf1) may be used as barcodes to resolve the higher-level phylogenies. Our study will provide valuable molecular resources for the taxonomic and phylogenomic study of the complex genus Aponogeton.

9.
Bot Stud ; 61(1): 15, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32415549

ABSTRACT

BACKGROUND: Nelumbo nucifera Gaertn., a perennial aquatic macrophyte species, has been cultivated in several Asian countries for its economic importance, and medicinal uses. Two distinct ecotypes of the species are recognized based on the geographical location where the genotypes are adapted, i.e., tropical lotus and temperate lotus. The genetic diversity levels and differentiation of the tropical lotus from poorly studied geographic regions still remain unclear. Here, the population genetic diversity and structure of 15 tropical lotus populations sampled from the previous understudied natural distribution ranges, including India, Thailand, and Australia, were assessed using nine polymorphic SSR markers. RESULTS: The SSR markers used to genotype the 216 individuals yielded 65 alleles. The highest and lowest genetic diversity estimates were found in Thailand and Indian populations, respectively. STRUCTURE analysis revealed three distinct genetic clusters, with relatively low admixtures, supported by PCoA cluster analysis. Low levels of gene flow (mean N⁠m = 0.346) among the three genetic clusters signified the Mantel test for isolation by distance, revealing the existence of a positive correlation between the genetic and geographic distances (r = 0.448, P = 0.004). Besides, AMOVA analysis revealed a higher variation among populations (59.98%) of the three groups. Overall, the populations used in this study exposed a high level of genetic differentiation (FST = 0.596). CONCLUSIONS: The nine polymorphic microsatellite markers used in our study sufficiently differentiated the fifteen tropical N. nucifera populations based on geography. These populations presented different genetic variability, thereby confirming that populations found in each country are unique. The low genetic diversity (HE = 0.245) could be explained by limited gene flow and clonal propagation. Conserving the available diversity using various conservation approaches is essential to enable the continued utilization of this economically important crop species. We, therefore, propose that complementary conservation approaches ought to be introduced to conserve tropical lotus, depending on the genetic variations and threat levels in populations.

10.
J Plant Res ; 133(3): 373-381, 2020 May.
Article in English | MEDLINE | ID: mdl-32162107

ABSTRACT

Revealing cryptic diversity is of great importance for effective conservation and understanding macroevolution and ecology of plants. Ottelia, a typical example of aquatic plants, possesses extremely variable morphology and the presence of cryptic diversity makes its classification problematic. Previous studies have revealed cryptic Ottelia species in Asia, but very little is known about the molecular systematics of this genus in Africa, a center of species diversity of Ottelia. In this study, we sampled Ottelia ulvifolia, an endemic species of tropical Africa, from Zambia and Cameroon. We used six chloroplast DNA regions, nrITS and six polymorphic microsatellite markers to estimate the molecular diversity and population genetic structure in O. ulvifolia. The phylogenetic inference, STACEY and STRUCTURE analyses supported at least three clusters within O. ulvifolia, each representing unique flower types (i.e., bisexual yellow flower, unisexual yellow flower and bisexual white flower types). Although abundant genetic variation (> 50%) was observed within the populations, excessive anthropogenic activities may result in genetic drift and bottlenecks. Here, three cryptic species of O. ulvifolia complex are defined, and insights are provided into the taxonomy of Ottelia using the phylogenetic species concept.


Subject(s)
Genetics, Population , Hydrocharitaceae/classification , Phylogeny , Africa , Genetic Variation , Hydrocharitaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...