Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35456978

ABSTRACT

The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.


Subject(s)
Inflammatory Bowel Diseases , Intestinal Mucosa , Animals , Epithelial Cells/metabolism , Homeostasis , Inflammation/pathology , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Mice
2.
Front Med (Lausanne) ; 8: 655123, 2021.
Article in English | MEDLINE | ID: mdl-34368179

ABSTRACT

Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.

3.
Cells ; 10(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33406731

ABSTRACT

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


Subject(s)
Gastrointestinal Diseases/enzymology , Intestinal Mucosa/enzymology , rho GTP-Binding Proteins/metabolism , Animals , Gastrointestinal Tract/pathology , Humans , Inflammation/pathology , Intestinal Mucosa/pathology , cdc42 GTP-Binding Protein/metabolism
4.
J Vis Exp ; (166)2020 12 03.
Article in English | MEDLINE | ID: mdl-33346195

ABSTRACT

Intravital microscopy of the gut using confocal imaging allows real time observation of epithelial cell shedding and barrier leakage in living animals. Therefore, the intestinal mucosa of anesthetized mice is topically stained with unspecific staining (acriflavine) and a fluorescent tracer (rhodamine-B dextran), mounted on a saline solution-rinsed plate and directly imaged using a confocal microscope. This technique can complement other non-invasive techniques to identify leakage of intestinal permeability, such as transmucosal passage of orally administered tracers. Besides this, the approach presented here allows the direct observation of cell shedding events at real-time. In combination with appropriate fluorescent reporter mice, this approach is suitable for shedding light into cellular and molecular mechanisms controlling intestinal epithelial cell extrusion, as well as to other biological processes. In the last decades, interesting studies using intravital microscopy have contributed to knowledge on endothelial permeability, immune cell gut homing, immune-epithelial communication and invasion of luminal components, among others. Together, the protocol presented here would not only help increase the understanding of mechanisms controlling epithelial cell extrusion, but could also be the basis for the developmental of other approaches to be used as instruments to visualize other highly dynamic cellular process, even in other tissues. Among technical limitations, optical properties of the specific tissue, as well as the selected imaging technology and microscope configuration, would in turn, determine the imaging working distance, and resolution of acquired images.


Subject(s)
Epithelial Cells/metabolism , Intestinal Mucosa/physiology , Intravital Microscopy , Alkyl and Aryl Transferases/metabolism , Animals , Image Processing, Computer-Assisted , Mice , Permeability , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL