Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36233923

ABSTRACT

In this paper, we present a flexible magnetic metamaterial structure for enhancing the efficiency of wireless power transfer (WPT) systems operating at 13.56 MHz. The metasurface between transmitter (Tx) and receiver (Rx) coils of the WPT system is constructed of a 3 × 5 metamaterial unit cell array with a total size of 150 × 300 mm2. Most metamaterial structures integrated into WPT systems are in planar configurations with a rigid substrate, which limits practical applications. The proposed metasurface is fabricated on an FR-4 substrate with a thin thickness of 0.2 mm; therefore, it can be bent with radii greater than 80 mm. A defect cavity is formed in the non-homogeneous metasurface by controlling the resonant frequency of the unit cell with an external capacitor. Simulation and measurement results show that the efficiency of the WPT system is significantly enhanced with metasurfaces. The performance of the WPT system can also be optimized with suitable bend profiles of metasurfaces. This proposed flexible metasurface could be widely applied to WPT systems, especially asymmetric, bendable, or wearable WPT systems.

2.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960439

ABSTRACT

The exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody-antigen-antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core-shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.


Subject(s)
Metal Nanoparticles , Biomarkers , Electromagnetic Fields , Gold , Spectrum Analysis, Raman
3.
Sensors (Basel) ; 21(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770363

ABSTRACT

In this work, the multilayer of the surface plasmon resonance (SPR) sensor was optimized to achieve the maximum sensor sensitivity. By optimizing the thickness of the silver layer (Ag) and dielectric films (TiO2 and AlAs), the optimum sensitivity of the SPR sensor could be obtained. The performance of the SPR sensor proposed was compared with control simulations utilizing zinc oxide (ZnO) and molybdenum oxide (MoO3). The numerical results indicate that the figure-of-merits (FOM) of the SPR sensor was achieved around 150/RIU, corresponding to the sensor sensitivity of 162.79°/RIU with the optimized thicknesses of the TiO2, Ag, and AlAs layers of 140 nm, 60 nm, and 25 nm, respectively. This refractive index sensor shows the FOM to have high detection accuracy and high sensitivity that lead to finding potential application in bio-chemical detection with a small volume of liquid used in biological diagnosis.


Subject(s)
Refractometry , Zinc Oxide , Silver , Surface Plasmon Resonance
4.
Sci Rep ; 11(1): 18690, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548537

ABSTRACT

In this article, we investigated the efficiency of a magnetic resonant wireless power transfer (MR-WPT) in conducting medium and found out an optimal frequency for designing the system. In conducting environment, the eddy current loss is generated by the high-frequency alternating currents in the coils. It is manifested by increased radiation resistance of resonator coil leads to decrease the quality factor (Q-factor), which reduces the wireless power transfer (WPT) efficiency in conducting medium. The Q-factor of the resonator coil strongly depending on the conductivity, frequency, and thickness of conducting block. Two MR-WPT systems operating at 10.0 MHz and 20.0 MHz are implemented to study the effect of conducting medium on efficiency. The achieved results indicated that the 20.0 MHz system has higher efficiency at a conductivity smaller than 6.0 S/m. However, at the larger conductivity, the 10.0 MHz system is more efficient. The results provide a method to determine the optimal frequency of a WPT system operating in the conducting medium with various conductivities and thickness blocks. This method can be used to design MR-WPT systems in numerous situations, such as autonomous underwater vehicles and medical implants.

5.
J Nanosci Nanotechnol ; 21(11): 5535-5541, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33980363

ABSTRACT

We report a numerical study of D-shaped photonic crystal fiber based plasmonic refractive index sensor with high resolution and sensitivity in the near-infrared region. D-shaped photonic crystal fiber is formed by side polishing one part of photonic crystal fiber. It has a polishing surface where plasmonic gold layer is coated to modulate the resonant wavelength and enhance the refractive index sensitivity. Several D-shaped photonic crystal fiber plasmonic sensors with various distances from the photonic crystal fiber's core to the polishing surface and gold thicknesses are designed and their characteristics are analyzed by the finite element method. The simulation results indicate that distance from the photonic crystal fiber's core to the polishing surface causes modifications in the loss intensity, the resonant wavelength, and the refractive index sensitivity of D-shaped photonic crystal fiber plasmonic sensor. Mass production of refractive index sensors were achieved using a simple fabrication process, whereby the D-shaped photonic crystal fiber is grinded where distance from the photonic crystal fiber's core to the polishing surface is less than one layer thickness and then coated with the gold layer. For the refractive index sensing applications, the maxima theoretical resolution and sensitivity of D-shaped photonic crystal fiber plasmonic sensor reach 2.98 × 10 6refractive index unit and 6,140 nm/refractive index unit in range of 1.30-1.37, respectively. We also report an initial fabrication of the D-shaped photonic crystal fiber following the standard stack-and- draw method to demonstrate the feasibility of the proposed device by using our in-house equipments. The proposed D-shaped photonic crystal fiber plasmonic sensor design in this work would be useful for the development of cheap refractive index sensors with high sensitivity and resolution.

6.
J Anal Methods Chem ; 2019: 6210240, 2019.
Article in English | MEDLINE | ID: mdl-31275692

ABSTRACT

In this work, SiO2 nanoparticles were prepared by the sol-gel method after sodium silicate was extracted from rice husk ash (RHA) under various experimental conditions such as types of acids, NaOH concentration, dissolved time, and temperature and used for removal of Fe2+ ions from aqueous solutions. The extracted SiO2 was morphologically and chemically characterized and showed a surface area of 78 m2/g and uniform pores of 2.71 nm, offering high adsorption capacity for Fe2+ ions. The influence of pH, contact time, and amount of adsorbent was studied in order to establish the best conditions for the Fe2+ adsorption and removal. Furthermore, the adsorption data were fitted with an exponential shape curve for all the three variable parameters that affect the adsorption process. The best results were obtained for pH 5, 20 min contact time, and 0.5 g adsorbent dose. The loading adsorption capacity was 9 mg of Fe2+ ions/g SiO2 in the concentration range 0.1-1.0 mgL-1. In addition, the synthesized SiO2 with the size of around 50 nm can be used for specific heavy metal removal and drug delivery, after modification of the SiO2 surface with various functional groups.

7.
Environ Technol ; 40(26): 3403-3411, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29733761

ABSTRACT

A vast majority of the organic solvents used in industry and laboratories are volatile, hazardous and toxic organic compounds, they are considered as a potent problem for human health and a cause of environmental pollution. Although analytical laboratory methods can determine extremely low solvent concentration, the sensing method with low cost and high sensitivity remains a conundrum. This paper presents and compares three methods (volatile organic compound (VOC), liquid drop and saturated vapour pressure) for determination of organic solvents in a liquid environment by using photonic sensor based on nano-porous silicon (pSi) microcavity structures. Among those, the VOC method provides the highest sensitivity at low solvent volume concentrations because it can create a high vapour pressure of the analyte on the sensor surface owing to the capillary deposition of the organic solvent into the silicon pores. This VOC method consists of three steps: heating the solution with its particular boiling temperature, controlling the flowing gas through liquid and cooling sensor. It delivers the highest sensitivity of 6.9 nm/% at a concentration of 5% and the limit of detection (LOD) of pSi-sensor is 0.014% in case of ethanol in water when using an optical system with a resolution of 0.1 nm. Especially, the VOC method is capable of detecting low volume concentration of methanol in two tested ethanol solutions of 30% (v/v) and 45% (v/v) with the LOD of pSi-sensor up to 0.01% and 0.04%, respectively. This result will help pave a way to control the quality of contaminated liquor beverages.


Subject(s)
Volatile Organic Compounds , Humans , Limit of Detection , Porosity , Silicon , Solvents
8.
Sci Rep ; 8(1): 16404, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30401800

ABSTRACT

The spectral properties of Fano resonance generated in multilayer dielectric gratings (MDGs) are reported and numerically investigated in this paper. We examine the MDG consisting of numerous identically alternative chalcogenide glass (As2S3) and silica (SiO2) multilayers with several grating widths inscribed through the structure, emphasizing quality (Q) and asymmetric (q) factors. Manipulation of Fano lineshape and its linear characteristics can be achieved by tailoring the layers' amount and grating widths so that the proposed structure can be applicable for several optical applications. Moreover, we demonstrate the switching/bistability behaviors of the MDG at Fano resonance which provide a significant switching intensity reduction compared to the established Lorentzian resonant structures.

9.
Nanotechnology ; 27(32): 325706, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27352636

ABSTRACT

The formation of interparticle duplex DNA conjugates with gold nanoparticles constitutes the basis for interparticle plasmonic coupling responsible for surface-enhanced Raman scattering signal amplification, but understanding of its correlation with interparticle spatial properties and particle sizes, especially in aqueous solutions, remains elusive. This report describes findings of an investigation of interparticle plasmonic coupling based on experimental measurements of localized surface plasmon resonance and surface enhanced Raman scattering characteristics for gold nanoparticles in aqueous solutions upon introduction of interparticle duplex DNA conjugates to define the interparticle spatial properties. Theoretical simulations of the interparticle optical properties and electric field enhancement based on a dimer model have also been performed to aid the understanding of the experimental results. The results have revealed a 'squeezed' interparticle spatial characteristic in which the duplex DNA-defined distance is close or shorter than A-form DNA conformation, which are discussed in terms of the interparticle interactions, providing fresh insight into the interparticle double-stranded DNA-defined interparticle spatial properties for the design of highly-sensitive nanoprobes in solutions for biomolecular detection.


Subject(s)
Metal Nanoparticles , Animals , DNA , Gold , Hominidae , Spectrum Analysis, Raman , Surface Plasmon Resonance
10.
J Nanosci Nanotechnol ; 15(9): 6568-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716213

ABSTRACT

We report an electrochemical synthesis of homogeneous and well-aligned ZnO nanorods (NRs) on transparent conducting aluminium-doped zinc oxide (AZO) thin films as electrodes. The selected ZnO NRs was then chemically corroded in HCl and KCl aqueous solutions to form nanopencils (NPs), and nanotubes (NTs), respectively. A DC magnetron sputtering was employed to fabricate AZO thin films at various thicknesses. The obtained AZO thin films have a c-direction orientation, transmittance above 80% in visible region, and sheet resistance approximately 40 Ω/sq. They are considered to be relevant as electrodes and seeding layers for electrochemical. The ZnO NRs are directly grown on the AZOs without a need of catalysts or additional seeding layers at temperature as low as 85 degrees C. Their shapes are strongly associated with the AZO thickness that provides a valuable way to control the diameter of ZnO NRs grown atop. With the addition of HCI and KCl aqueous solutions, ZnO NRs were modified their shape to NPs and NTs with the reaction time, respectively. All the ZnO NRs, NPs, and NTs are preferred to grow along c-direction that indicates a lattice matching between AZO thin films and ZnO nanostructrures. Photoluminescence spectra and XRD patterns show that they have good crystallinities. A great photocatalytic activity of ZnO nanostructures promises potential application in environmental treatment and protection. The ZnO NTs exhibits a higher photocatalysis than others possibly due to the oxygen vacancies on the surface and the polarizability of Zn2+ and O2-.

11.
Anal Chem ; 87(21): 10698-702, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26479337

ABSTRACT

This report describes new findings of an investigation of a bifunctional nanocomposite probe for the detection of cancer biomarkers, demonstrating the viability of magnetic focusing and SERS detection in a microfluidic platform. The nanocomposite probe consists of a magnetic nickel-iron core and a gold shell. Upon bioconjugation, the nanoprobes are magnetically focused on a specific spot in a microfluidic channel, enabling an enrichment of "hot spots" for surface enhanced Raman scattering detection of the targeted carcinoembryonic antigen. The detection sensitivity, with a limit of detection of ∼0.1 pM, is shown to scale with the magnetic focusing time and the nanoparticle size. The latter is also shown to exhibit an excellent agreement between the experimental data and the theoretical simulation. Implications of the findings to the development of rapid and sensitive microfluidic detection of cancer biomarkers are also discussed.


Subject(s)
Biomarkers, Tumor/analysis , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Spectrum Analysis, Raman , Biomarkers, Tumor/chemistry , Humans , Particle Size
12.
Phys Chem Chem Phys ; 17(43): 28529-33, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26456170

ABSTRACT

This report demonstrates that both surface plasmon resonance absorption and surface-enhanced Raman scattering work in concert with plasmonic coupling. The kinetic correlation between the two spectroscopic signatures highlights an effective pathway for harnessing the nanoparticles in solution for a broad range of applications by exploiting the plasmonic and spectroscopic properties.

13.
Opt Lett ; 39(4): 907-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562238

ABSTRACT

Low pump threshold upconversion narrowband emission at 537 nm in a simple system of erbium-doped silica microsphere at the tip of a fiber is reported. The emission comes out radially (not from whispering gallery modes) and is strongly enhanced by a thin metal coating, in particular with platinum. This enhancement seems to be related to the coupling with surface plasmons. The emission wavelength does not correspond to any energy level differences of erbium in silica, and is the same that was reported earlier in a coated fiber.

14.
Opt Express ; 17(26): 23459-67, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20052053

ABSTRACT

We investigate properties of nonlinear resonant gratings with emphasis on optical bistability. Slab waveguide gratings with various quality factors are designed and their characteristics analyzed with a finite-difference time-domain method. Considerable field enhancements are observed in the gratings and the performance compares favorably with metallic bistable devices. Bistability based on coupled gratings is also treated. Mechanically controllable switching intensity realized by varying a gap distance between two gratings is demonstrated. Resonant nonlinear elements in this work may find applications in all-optical information processing and optical switching, and our investigation on the dependence of the normalized switching intensity and the response time on quality factor will provide a general guide line for grating-based bistable device design.


Subject(s)
Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL