Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 26(4): 977-994, 2017 02.
Article in English | MEDLINE | ID: mdl-27914203

ABSTRACT

Elucidating patterns of population structure for species with complex life histories, and disentangling the processes driving such patterns, remains a significant analytical challenge. Humpback whale (Megaptera novaeangliae) populations display complex genetic structures that have not been fully resolved at all spatial scales. We generated a data set of nuclear markers for 3575 samples spanning the seven breeding stocks and substocks found in the South Atlantic and western and northern Indian Oceans. For the total sample, and males and females separately, we assessed genetic diversity, tested for genetic differentiation between putative populations and isolation by distance, estimated the number of genetic clusters without a priori population information and estimated rates of gene flow using maximum-likelihood and Bayesian approaches. At the ocean basin scale, structure is governed by geographical distance (IBD P < 0.05) and female fidelity to breeding areas, in line with current understanding of the drivers of broadscale population structure. Consistent with previous studies, the Arabian Sea breeding stock was highly genetically differentiated (FST 0.034-0.161; P < 0.01 for all comparisons). However, the breeding stock boundary between west South Africa and east Africa was more porous than expected based on genetic differentiation, cluster and geneflow analyses. Instances of male fidelity to breeding areas and relatively high rates of dispersal for females were also observed between the three substocks in the western Indian Ocean. The relationships between demographic units and current management boundaries may have ramifications for assessments of the status and continued protections of populations still in recovery from commercial whaling.


Subject(s)
Gastrointestinal Microbiome , Humpback Whale , Lizards , Africa, Eastern , Africa, Western , Animals , Bayes Theorem , Female , Genetic Structures , Indian Ocean , Male , South Africa
2.
PLoS One ; 6(5): e19905, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21589942

ABSTRACT

Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool.


Subject(s)
Marine Biology , Turtles , Africa, Central , Animals
3.
PLoS One ; 4(10): e7318, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19812698

ABSTRACT

Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.


Subject(s)
Humpback Whale/genetics , Humpback Whale/physiology , Animal Migration , Animals , Atlantic Ocean , DNA, Mitochondrial , Ecology , Female , Genetics, Population , Haplotypes , Indian Ocean , Male , Models, Biological , Models, Genetic , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...