Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 22(1): 94-103, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37756563

ABSTRACT

Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS: Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.


Subject(s)
Leukemia, Myeloid, Acute , Phosphoric Monoester Hydrolases , Animals , Mice , Leukemia, Myeloid, Acute/genetics , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/genetics
2.
Cancer Res Commun ; 4(1): 5-17, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38047587

ABSTRACT

The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE: Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.


Subject(s)
Lymphoma , Sarcoma , Soft Tissue Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Genes, Tumor Suppressor , Lymphoma/drug therapy , PTEN Phosphohydrolase/genetics
3.
JCI Insight ; 8(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37665633

ABSTRACT

Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.


Subject(s)
Leukemia, Myeloid, Acute , Signal Transduction , Animals , Humans , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Hematopoietic Stem Cells/metabolism
4.
Anal Chem ; 95(12): 5214-5222, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917636

ABSTRACT

Mass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis. In this study, we demonstrate proteoform mapping in biological tissues with a spatial resolution down to 7 µm using nano-DESI MSI. A substantial decrease in protein signals observed in high-spatial-resolution MSI makes these experiments challenging. We have enhanced the sensitivity of nano-DESI MSI experiments by optimizing the design of the capillary-based probe and the thickness of the tissue section. In addition, we demonstrate that oversampling may be used to further improve spatial resolution at little or no expense to sensitivity. These developments represent a new step in MSI-based spatial proteomics, which complements targeted imaging modalities widely used for studying biological systems.


Subject(s)
Diagnostic Imaging , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Ions
5.
Autophagy ; 19(5): 1562-1581, 2023 05.
Article in English | MEDLINE | ID: mdl-36300783

ABSTRACT

Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.


Subject(s)
Immediate-Early Proteins , Macroautophagy , Animals , Mice , Autophagy/physiology , Valosin Containing Protein/metabolism , Fibroblasts/metabolism , Proteins/metabolism , Ubiquitin/metabolism , Lysosomes/metabolism , Protein Tyrosine Phosphatases/metabolism , Immediate-Early Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 117(34): 20538-20548, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32788364

ABSTRACT

Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.


Subject(s)
Carcinogenesis , Immediate-Early Proteins/physiology , PTEN Phosphohydrolase/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/physiology , Animals , Female , HEK293 Cells , Humans , Longevity , Male , Mice, Inbred C57BL , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...