Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 67(12): e0058823, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37947766

ABSTRACT

Malaria molecular surveillance remains critical in detecting and tracking emerging parasite resistance to anti-malarial drugs. The current study employed molecular techniques to determine Plasmodium species prevalence and characterize the genetic diversity of Plasmodium falciparum and Plasmodium malariae molecular markers of sulfadoxine-pyrimethamine resistance in humans and wild Anopheles mosquito populations in Cameroon. Anopheles mosquito collections and parasitological survey were conducted in villages to determine Plasmodium species infection, and genomic phenotyping of anti-folate resistance was accomplished by sequencing the dihydrofolate-reductase (dhfr) and dihydropteroate-synthase (dhps) genes of naturally circulating P. falciparum and P. malariae isolates. The malaria prevalence in Elende was 73.5% with the 5-15 years age group harboring significant P. falciparum (27%) and P. falciparum + P. malariae (19%) infections. The polymorphism breadth of the pyrimethamine-associated Pfdhfr marker revealed a near fixation (94%) of the triple-mutant -A16I51R59N108I164. The Pfdhps backbone mediating sulfadoxine resistance reveals a high frequency of the V431A436G437K540A581A613 alleles (20.8%). Similarly, the Pmdhfr N50K55L57R58S59S114F168I170 haplotype (78.4%) was predominantly detected in the asexual blood stage. In contrast, the Pmdhps- S436A437occured at 37.2% frequency. The combined quadruple N50K55L57R58S59S114F168I170_ S436G437K540A581A613 (31.9%) was the major circulating haplotype with similar frequency in humans and mosquitoes. This study highlights the increasing frequency of the P. malariae parasite mostly common in asymptomatic individuals with apparent P. falciparum infection. Interventions directed at reducing malaria transmission such as the scaling-up of SP are favoring the emergence and spread of multiple drug-resistant alleles between the human and mosquito host systems.


Subject(s)
Anopheles , Antimalarials , Malaria, Falciparum , Malaria , Animals , Humans , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use , Anopheles/genetics , Alleles , Cameroon/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Drug Combinations , Plasmodium falciparum , Malaria/drug therapy , Malaria/epidemiology , Malaria/genetics , Drug Resistance/genetics , Tetrahydrofolate Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...