Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518773

ABSTRACT

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolism
2.
Acta Neuropathol Commun ; 11(1): 19, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691076

ABSTRACT

We recently discovered that the expression of PRKN, a young-onset Parkinson disease-linked gene, confers redox homeostasis. To further examine the protective effects of parkin in an oxidative stress model, we first combined the loss of prkn with Sod2 haploinsufficiency in mice. Although adult prkn-/-//Sod2± animals did not develop dopamine cell loss in the S. nigra, they had more reactive oxidative species and a higher concentration of carbonylated proteins in the brain; bi-genic mice also showed a trend for more nitrotyrosinated proteins. Because these redox changes were seen in the cytosol rather than mitochondria, we next explored the thiol network in the context of PRKN expression. We detected a parkin deficiency-associated increase in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in murine brain, PRKN-linked human cortex and several cell models. This shift resulted from enhanced recycling of GSSG back to GSH via upregulated glutathione reductase activity; it also correlated with altered activities of redox-sensitive enzymes in mitochondria isolated from mouse brain (e.g., aconitase-2; creatine kinase). Intriguingly, human parkin itself showed glutathione-recycling activity in vitro and in cells: For each GSSG dipeptide encountered, parkin regenerated one GSH molecule and was S-glutathionylated by the other (GSSG + P-SH [Formula: see text] GSH + P-S-SG), including at cysteines 59, 95 and 377. Moreover, parkin's S-glutathionylation was reversible by glutaredoxin activity. In summary, we found that PRKN gene expression contributes to the network of available thiols in the cell, including by parkin's participation in glutathione recycling, which involves a reversible, posttranslational modification at select cysteines. Further, parkin's impact on redox homeostasis in the cytosol can affect enzyme activities elsewhere, such as in mitochondria. We posit that antioxidant functions of parkin may explain many of its previously described, protective effects in vertebrates and invertebrates that are unrelated to E3 ligase activity.


Subject(s)
Glutathione , Proteins , Adult , Mice , Humans , Animals , Glutathione Disulfide/metabolism , Glutathione/metabolism , Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Ubiquitin-Protein Ligases/genetics , Antioxidants , Cysteine/metabolism , Brain/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Mammals/metabolism
3.
Sci Transl Med ; 14(674): eabq6682, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36475902

ABSTRACT

The lung naturally resists Aspergillus fumigatus (Af) in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models. We found a conserved and essential coupling of innate B1a lymphocytes, Af-binding natural immunoglobulin G antibodies, and lung neutrophils. Failure of this axis concealed Af from neutrophils, allowing rapid fungal invasion and disease. Reconstituting the axis with immunoglobulin therapy reestablished resistance, thus representing a realistic pathway to repurpose currently available therapies. Together, we report a vital host resistance pathway that is responsible for protecting against life-threatening aspergillosis in the context of distinct susceptibilities.


Subject(s)
COVID-19 , Neutrophils , Humans , Animals , Mice , SARS-CoV-2 , Steroids/therapeutic use
4.
Nat Med ; 28(1): 201-211, 2022 01.
Article in English | MEDLINE | ID: mdl-34782790

ABSTRACT

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Respiratory Distress Syndrome/immunology , Adult , Aged , COVID-19/complications , COVID-19/genetics , Cell Communication , Chromatography, Liquid , Down-Regulation , Female , Gene Regulatory Networks , Humans , Immunity, Innate/immunology , Interferons/immunology , Male , Middle Aged , Neutrophils/metabolism , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/genetics , Prostaglandins/immunology , Proteomics , RNA-Seq , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Single-Cell Analysis , Tandem Mass Spectrometry , COVID-19 Drug Treatment
5.
Acta Neuropathol ; 141(5): 725-754, 2021 05.
Article in English | MEDLINE | ID: mdl-33694021

ABSTRACT

The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson's-linked neurodegeneration.


Subject(s)
Aging/metabolism , Dopamine/metabolism , Mesencephalon/metabolism , Nerve Degeneration/metabolism , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Animals , Child , Child, Preschool , Female , Humans , Male , Mesencephalon/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Degeneration/pathology , Oxidation-Reduction , Young Adult
6.
J Neural Transm (Vienna) ; 124(6): 721-738, 2017 06.
Article in English | MEDLINE | ID: mdl-28477284

ABSTRACT

Braak and Del Tredici have proposed that typical Parkinson disease (PD) has its origins in the olfactory bulb and gastrointestinal tract. However, the role of the olfactory system has insufficiently been explored in the pathogeneses of PD and Alzheimer disease (AD) in laboratory models. Here, we demonstrate applications of a new method to process mouse heads for microscopy by sectioning, mounting, and staining whole skulls ('holocranohistochemistry'). This technique permits the visualization of the olfactory system from the nasal cavity to mitral cells and dopamine-producing interneurons of glomeruli in the olfactory bulb. We applied this method to two specific goals: first, to visualize PD- and AD-linked gene expression in the olfactory system, where we detected abundant, endogenous α-synuclein and tau expression in the olfactory epithelium. Furthermore, we observed amyloid-ß plaques and proteinase-K-resistant α-synuclein species, respectively, in cranial nerve-I of APP- and human SNCA-over-expressing mice. The second application of the technique was to the modeling of gene-environment interactions in the nasal cavity of mice. We tracked the infection of a neurotropic respiratory-enteric-orphan virus from the nose pad into cranial nerves-I (and -V) and monitored the ensuing brain infection. Given its abundance in the olfactory epithelia, we questioned whether α-synuclein played a role in innate host defenses to modify the outcome of infections. Indeed, Snca-null mice were more likely to succumb to viral encephalitis versus their wild-type littermates. Moreover, using a bacterial sepsis model, Snca-null mice were less able to control infection after intravenous inoculation with Salmonella typhimurium. Together, holocranohistochemistry enabled new discoveries related to α-synuclein expression and its function in mice. Future studies will address: the role of Mapt and mutant SNCA alleles in infection paradigms; the contribution of xenobiotics in the initiation of idiopathic PD; and the safety to the host when systemically targeting α-synuclein by immunotherapy.


Subject(s)
Brain/metabolism , Brain/virology , Encephalitis, Viral/virology , Olfactory Mucosa/anatomy & histology , Olfactory Mucosa/metabolism , Reoviridae Infections/virology , alpha-Synuclein/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/diagnostic imaging , Brain/pathology , Disease Models, Animal , Encephalitis, Viral/immunology , Encephalitis, Viral/mortality , Encephalitis, Viral/pathology , Female , Head , Humans , Immunohistochemistry , Male , Mammalian orthoreovirus 3 , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Neural Pathways/pathology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/virology , Reoviridae Infections/immunology , Salmonella Infections/immunology , Salmonella Infections/pathology , Salmonella typhimurium , Tissue Preservation/methods , alpha-Synuclein/genetics
7.
J Biol Chem ; 291(19): 10263-76, 2016 May 06.
Article in English | MEDLINE | ID: mdl-26987902

ABSTRACT

Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases.


Subject(s)
Lysosomes/metabolism , Mitochondria/metabolism , Animals , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Cell Line , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Lysosomes/genetics , Lysosomes/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
8.
Cell Stem Cell ; 12(4): 440-52, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23499385

ABSTRACT

The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.


Subject(s)
Cell Cycle , E2F3 Transcription Factor/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/genetics , Aging/metabolism , Animals , Base Sequence , Cell Count , Cell Cycle/genetics , Cell Lineage/genetics , Cell Proliferation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Models, Biological , Molecular Sequence Data , Neurogenesis , Promoter Regions, Genetic/genetics , Protein Isoforms/metabolism , SOXB1 Transcription Factors/metabolism
9.
Hum Mol Genet ; 22(5): 952-62, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23187960

ABSTRACT

Mitochondrial dysfunction plays an important role in the etiology of neurodegenerative diseases. However, the progressive nature of neuronal loss in genetic models of mitochondrial dysfunction suggests the presence of compensatory mechanisms promoting neuronal survival under these conditions. Here, we identified the energy metabolism kinase LKB1 as a key regulator of the compensatory mechanisms activated in neurons, following mitochondrial dysfunction. To accomplish this, we have created an in vivo neurodegenerative model based on the deletion of the mitochondrial protein apoptosis-inducing factor (AIF) in postmitotic neurons. Loss of mitochondrial function caused by AIF deletion induced several adaptive mechanisms, including increased glycolysis and mitochondrial biogenesis. Importantly, the activation of these adaptive mechanisms was abrogated by the deletion of one allele of LKB1, resulting in impaired neuronal survival. Because loss of mitochondrial function is a central mechanism implicated in neurodegenerative diseases, modulation of LKB1-dependent pathways may represent an important strategy to preserve neuronal survival and function.


Subject(s)
Mitochondria/genetics , Mitochondrial Diseases/metabolism , Neurodegenerative Diseases/genetics , Protein Serine-Threonine Kinases , AMP-Activated Protein Kinases , Animals , Apoptosis , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Cell Survival , Energy Metabolism/genetics , Humans , Mice , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
10.
EMBO J ; 30(2): 395-407, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21139567

ABSTRACT

Apoptosis has an important role during development to regulate cell number. In differentiated cells, however, activation of autophagy has a critical role by enabling cells to remain functional following stress. In this study, we show that the antiapoptotic BCL-2 homologue MCL-1 has a key role in controlling both processes in a developmentally regulated manner. Specifically, MCL-1 degradation is an early event not only following induction of apoptosis, but also under nutrient deprivation conditions where MCL-1 levels regulate activation of autophagy. Furthermore, deletion of MCL-1 in cortical neurons of transgenic mice activates a robust autophagic response. This autophagic response can, however, be converted to apoptosis by either reducing the levels of the autophagy regulator Beclin-1, or by a concomitant activation of BAX. Our results define a pathway whereby MCL-1 has a key role in determining cell fate, by coordinately regulating apoptosis and autophagy.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Neurons/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Analysis of Variance , Animals , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunohistochemistry , Membrane Proteins/metabolism , Mice , Mice, Knockout , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism
11.
Curr Neurovasc Res ; 5(3): 171-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18691074

ABSTRACT

Intracerebral hemorrhage (ICH) was widely believed to be a monophasic event whereby cell death occurs from the initial space-occupying effects of the hematoma. However, we now know that secondary degenerative events contribute to delayed cell death, functional impairment and clinical deterioration. In three experiments, we further characterized the long-term maturation of injury in the collagenase model of striatal ICH in rat. First, we quantified the volume of tissue lost from 7 to 60 days showing that tissue loss more than doubled over this time. As the volume of tissue lost does not distinguish gray from white matter damage, gold chloride staining was used in a second experiment in ICH rats that survived 7 or 60 days. The mid-sagittal area of the corpus callosum significantly declined (22%) over this period, whereas the hippocampal and anterior commissures were not affected. A third experiment used the Golgi-Cox stain to examine dendritic arborization of peri-hematoma and contralateral medium spiny neurons of the striatum. We found an early and sustained increase in dendritic arborization in the non-lesioned hemisphere, whereas there was initial atrophy of peri-hematoma striatal neurons that eventually recovered to normal. These findings show that tissue loss, including white matter atrophy, continues over extended periods after ICH making it a potential target for cytoprotective agents. Finally, the dendritic alterations in both ipsi- and contralateral striatal neurons likely influence spontaneous recovery and are potential targets to further improve it.


Subject(s)
Cerebral Hemorrhage/complications , Dendrites/pathology , Nerve Degeneration/etiology , Nerve Degeneration/pathology , Animals , Atrophy/etiology , Atrophy/pathology , Atrophy/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebral Hemorrhage/chemically induced , Collagenases , Coloring Agents , Corpus Callosum/pathology , Corpus Callosum/physiopathology , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , Disease Progression , Gold Compounds , Male , Nerve Degeneration/physiopathology , Nerve Fibers, Myelinated/pathology , Rats , Rats, Sprague-Dawley , Silver Staining , Staining and Labeling
12.
Brain Res ; 1193: 109-19, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18178174

ABSTRACT

Estrogen influences not only the incidence of stroke, but also the amount of injury sustained from a stroke including intracerebral hemorrhage (ICH). In this study we tested whether delayed 17beta-estradiol (E2) treatment affects recovery following striatal ICH. Female rats were trained and tested on several behavioral tests to assess skilled reaching, spontaneous forelimb usage and walking ability. Two weeks following ovariectomy, rats were subjected to a moderate-sized ICH via infusion of collagenase into the striatum. One week later they were implanted with either an E2 pellet (0.36 mg; 60-day release) or they underwent a sham procedure. They were further divided into groups that received either environmental enrichment (EE) rehabilitation therapy (group housing in a complex cage with ramps, tunnels, etc.) or a control condition (group housing in a standard cage). Rats were then behaviorally evaluated out to 8 weeks post-ICH and then euthanized. Neither EE nor E2 affected lesion size, which averaged 62.8 mm(3) across all groups. The EE therapy improved recovery on some tests (e.g., traversing a horizontal ladder) whereas E2 treatment did not notably affect either spontaneous or EE-facilitated recovery. Thus, E2 fails to improve recovery or protect against brain injury when given after a 1-week delay in contrast to its clear neuroprotective effects when given before or soon after ICH.


Subject(s)
Environment , Estradiol/therapeutic use , Estrogens/therapeutic use , Intracranial Hemorrhages/drug therapy , Recovery of Function/drug effects , Analysis of Variance , Animals , Behavior, Animal , Body Weight/drug effects , Body Weight/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Disease Models, Animal , Female , Intracranial Hemorrhages/pathology , Intracranial Hemorrhages/physiopathology , Intracranial Hemorrhages/rehabilitation , Locomotion/drug effects , Locomotion/physiology , Ovariectomy , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Time Factors , Treatment Failure
13.
Brain Res ; 1153: 214-20, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17462607

ABSTRACT

Global forebrain ischemia arising from brief occlusion of the carotid arteries in gerbils produces selective hippocampal CA1 neuronal loss. Pre-treatment with 17beta-estradiol ameliorates, in part, ischemia-induced damage in young animals. Because stroke and cardiac arrest are more likely to occur among elderly individuals, neuroprotective studies in older animals have compelling clinical relevance. We investigated whether estradiol would attenuate ischemia-induced hippocampal neuronal injury in middle-aged (12-14 months) male, intact female, ovariectomized (OVX) female and OVX females treated for 14 days with estradiol. Core temperature telemetry probes were also implanted at the time that estradiol was initiated. Ischemia was induced by bilateral occlusion of the common carotid arteries (5 min), during which time skull temperature was maintained under normothermic conditions. Estradiol blocked the modest spontaneous hyperthermia that normally follows ischemia. However, all four groups exhibited substantial neuronal cell loss in the CA1, assessed at 7 after ischemia. These findings indicate that estradiol pre-treatment under conditions that produce neuroprotection in young animals does not protect against ischemia-induced CA1 cell loss in middle-aged female gerbils.


Subject(s)
Brain Ischemia/drug therapy , Brain Ischemia/pathology , Estradiol/therapeutic use , Hippocampus/drug effects , Analysis of Variance , Animals , Brain Ischemia/complications , Cell Count , Cells, Cultured , Estradiol/blood , Female , Gerbillinae , Hippocampus/pathology , Neurons/drug effects , Ovariectomy
14.
J Comp Neurol ; 486(2): 159-68, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15844212

ABSTRACT

Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45 degrees to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones.


Subject(s)
Cerebellar Cortex/cytology , Columbidae/anatomy & histology , Neural Pathways/cytology , Neurons/cytology , Olivary Nucleus/cytology , Animals , Axons/physiology , Axons/ultrastructure , Cerebellar Cortex/physiology , Columbidae/physiology , Fixation, Ocular/physiology , Fluorescent Dyes , Neural Pathways/physiology , Neurons/physiology , Olivary Nucleus/physiology , Psychomotor Performance/physiology , Reflex, Vestibulo-Ocular/physiology
15.
J Neurosci ; 24(21): 4962-70, 2004 May 26.
Article in English | MEDLINE | ID: mdl-15163688

ABSTRACT

The ectostriatum is a large visual structure in the avian telencephalon. Part of the tectofugal pathway, the ectostriatum receives a large ascending thalamic input from the nucleus rotundus, the homolog of the mammalian pulvinar complex. We investigated the effects of bilateral lesions of the ectostriatum in pigeons on visual motion and spatial-pattern perception tasks. To test motion perception, we measured performance on a task requiring detection of coherently moving random dots embedded in dynamic noise. To test spatial-pattern perception, we measured performance on the detection of a square wave grating embedded in static noise. A double dissociation was revealed. Pigeons with lesions to the caudal ectostriatum showed a performance deficit on the motion task but not the grating task. In contrast, pigeons with lesions to the rostral ectostriatum showed a performance deficit on the grating task but not the motion task. Thus, in the avian telencephalon, there is a separation of visual motion and spatial-pattern perception as there is in the mammalian telencephalon. However, this separation of function is in the targets of the tectofugal pathway in pigeons rather than in the thalamofugal pathway as described in mammals. The implications of these findings with respect to the evolution of the visual system are discussed. Specifically, we suggest that the principle of parallel visual streams originated in the tectofugal pathway rather than the thalamofugal pathway.


Subject(s)
Columbidae/physiology , Motion Perception/physiology , Spatial Behavior/physiology , Vision, Ocular/physiology , Visual Cortex/physiology , Analysis of Variance , Animals , Visual Cortex/cytology , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL