Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Craniofac Surg ; 35(1): e32-e34, 2024.
Article in English | MEDLINE | ID: mdl-37702519

ABSTRACT

Polyglactin 910 (Vicryl) and polypropylene (Prolene) are common suture materials used in ophthalmic surgical procedures. However, there are limited studies assessing tissue reactions to different sutures in eyelid areas. In this study, these suture materials were used subcutaneously in 10 lateral canthi of 5 pigs. Clinical reactive score (CRS) was assessed 14 days and 60 days after surgery. On histology, subcutaneous tissue reactions were assessed by the presence of different inflammatory cells, and the aggregate tissue irritation score was calculated. CRS and the histology score did not differ between these sutures. None of the suture materials used were superior for use in the lateral canthi of pig eyes. Therefore, we recommend both of these sutures for use in the subcutaneous tissue of the eyelid area in animal experiments or clinical practice.


Subject(s)
Lacrimal Apparatus , Research Design , Swine , Animals , Sutures , Polyglactin 910 , Eyelids/surgery , Suture Techniques
2.
Nat Commun ; 14(1): 8290, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38092727

ABSTRACT

Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Deep Learning , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Retrospective Studies
3.
Sci Rep ; 12(1): 21053, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473907

ABSTRACT

The 2019 global coronavirus (COVID-19) pandemic has brought the world to a grinding halt, highlighting the urgent need for therapeutic and preventive solutions to slow the spread of emerging viruses. The objective of this study was to assess the anti-SARS-CoV-2 effectiveness of 8 FDA-approved cationic amphiphilic drugs (CADs). SARS-CoV-2-infected Vero cells, Calu-3 cells and primary Human Nasal Epithelial Cells (HNEC) were used to investigate the effects of CADs and revealed their antiviral mode of action. Among the CADs tested, desloratadine, a commonly used antiallergic, well-tolerated with no major side effects, potently reduced the production of SARS-CoV-2 RNA in Vero-E6 cells. Interestingly, desloratadine was also effective against HCoV-229E and HCoV-OC43 showing that it possessed broad-spectrum anti-coronavirus activity. Investigation of its mode of action revealed that it targeted an early step of virus lifecycle and blocked SARS-CoV-2 entry through the endosomal pathway. Finally, the ex vivo kinetic of the antiviral effect of desloratadine was evaluated on primary Human Nasal Epithelial Cells (HNEC), showing a significant delay of viral RNA production with a maximal reduction reached after 72 h of treatment. Thus, this treatment could provide a substantial contribution to prophylaxis and systemic therapy of COVID-19 or other coronaviruses infections and requires further studies.


Subject(s)
COVID-19 , Virus Internalization , Chlorocebus aethiops , Animals , Humans , SARS-CoV-2 , Vero Cells , RNA, Viral , Cell Culture Techniques
4.
J Hepatol ; 77(6): 1586-1597, 2022 12.
Article in English | MEDLINE | ID: mdl-35987274

ABSTRACT

BACKGROUND & AIMS: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer (PLC) associated with a poor prognosis. Given the challenges in its identification and its clinical implications, biomarkers are critically needed. We aimed to investigate the diagnostic and prognostic value of the immunohistochemical expression of Nestin, a progenitor cell marker, in a large multicentric series of PLCs. METHODS: We collected 461 cHCC-CCA samples from 32 different clinical centers. Control cases included 368 hepatocellular carcinomas (HCCs) and 221 intrahepatic cholangiocarcinomas (iCCAs). Nestin immunohistochemistry was performed on whole tumor sections. Diagnostic and prognostic performances of Nestin expression were determined using receiver-operating characteristic curves and Cox regression modeling. RESULTS: Nestin was able to distinguish cHCC-CCA from HCC with AUCs of 0.85 and 0.86 on surgical and biopsy samples, respectively. Performance was lower for the distinction of cHCC-CCA from iCCA (AUCs of 0.59 and 0.60). Nestin, however, showed a high prognostic value, allowing identification of the subset of cHCC-CCA ("Nestin High", >30% neoplastic cells with positive staining) associated with the worst clinical outcome (shorter disease-free and overall survival) after surgical resection and liver transplantation, as well as when assessment was performed on biopsies. CONCLUSION: We show in different clinical settings that Nestin has diagnostic value and that it is a useful biomarker to identify the subset of cHCC-CCA associated with the worst clinical outcome. Nestin immunohistochemistry may be used to refine risk stratification and improve treatment allocation for patients with this highly aggressive malignancy. LAY SUMMARY: There are different types of primary liver cancers (i.e. cancers that originate in the liver). Accurately identifying a specific subtype of primary liver cancer (and determining its associated prognosis) is important as it can have a major impact on treatment allocation. Herein, we show that a protein called Nestin could be used to refine risk stratification and improve treatment allocation for patients with combined hepatocellular carcinoma, a rare but highly aggressive subtype of primary liver cancer.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Nestin , Carcinoma, Hepatocellular/diagnosis , Prognosis , Liver Neoplasms/diagnosis , Cholangiocarcinoma/diagnosis , Bile Duct Neoplasms/diagnosis , Bile Ducts, Intrahepatic
5.
Mol Oncol ; 16(17): 3055-3065, 2022 09.
Article in English | MEDLINE | ID: mdl-35624529

ABSTRACT

Exonucleasic domain POLE (edPOLE) mutations, which are responsible for a hypermutated tumor phenotype, occur in 1-2% of colorectal cancer (CRC) cases. These alterations represent an emerging biomarker for response to immune checkpoint blockade. This study aimed to assess the molecular characteristics of edPOLE-mutated tumors to facilitate patient screening. Based on opensource data analysis, we compared the prevalence of edPOLE mutations in a control group of unselected CRC patients (n = 222) vs a group enriched for unusual BRAF/RAS mutations (n = 198). Tumor mutational burden (TMB) and immune infiltrate of tumors harboring edPOLE mutations were then analyzed. In total, 420 CRC patients were analyzed: 11 edPOLE-mutated tumors were identified, most frequently in microsatellite (MMR)-proficient young (< 70 years) male patients, with left-sided tumors harboring noncodon 12 KRAS mutation. The prevalence of edPOLE-mutated tumors in the control vs the experimental screening group was, respectively, 0.45% (n = 1) vs 5.0% (n = 10). Among the 11 edPOLE-mutated cases, two had a low TMB, three were hypermutated, and six were ultramutated. EdPOLE-mutated cases had a high CD8+ tumor-infiltrating lymphocyte (TIL) infiltration. These clinicopathological and molecular criteria may help to identify edPOLE mutations associated with a high TMB in CRC, and improve the selection of patients who could benefit from immunotherapy.


Subject(s)
Colorectal Neoplasms , DNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Proto-Oncogene Proteins B-raf , Biomarkers, Tumor/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , GTP Phosphohydrolases/genetics , Humans , Male , Membrane Proteins/genetics , Mutation/genetics , Prevalence , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics
6.
J Hepatol ; 77(1): 116-127, 2022 07.
Article in English | MEDLINE | ID: mdl-35143898

ABSTRACT

BACKGROUND & AIMS: Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures. METHODS: AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures. RESULTS: The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils. CONCLUSION: We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice. LAY SUMMARY: Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Artificial Intelligence , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , ROC Curve
7.
Clin Cancer Res ; 28(3): 540-551, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34785581

ABSTRACT

PURPOSE: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare malignancy associated with an overall poor prognosis. We aimed to investigate the immune profile of cHCC-CCA and determine its impact on disease outcome. EXPERIMENTAL DESIGN: We performed a multicenter study of 96 patients with cHCC-CCA. Gene expression profile was analyzed using nCounter PanCancer IO 360 Panel. Densities of main immune cells subsets were quantified from digital slides of IHC stainings. Genetic alterations were investigated using targeted next-generation sequencing. RESULTS: Two main immune subtypes of cHCC-CCA were identified by clustering analysis: an "immune-high" (IH) subtype (57% of the cases) and an "immune-low" (IL) subtype (43% of the cases). Tumors classified as IH showed overexpression of genes related to immune cells recruitment, adaptive and innate immunity, antigen presentation, cytotoxicity, immune suppression, and inflammation (P < 0.0001). IH cHCC-CCAs also displayed activation of gene signatures recently shown to be associated with response to immunotherapy in patients with HCC. Quantification of immunostainings confirmed that IH tumors were also characterized by higher densities of immune cells. Immune subtypes were not associated with any genetic alterations. Finally, multivariate analysis showed that the IH subtype was an independent predictor of improved overall survival. CONCLUSIONS: We have identified a subgroup of cHCC-CCA that displays features of an ongoing intratumor immune response, along with an activation of gene signatures predictive of response to immunotherapy in HCC. This tumor subclass is associated with an improved clinical outcome. These findings suggest that a subset of patients with cHCC-CCA may benefit from immunomodulating therapeutic approaches.


Subject(s)
Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Cholangiocarcinoma/immunology , Cholangiocarcinoma/therapy , Immunotherapy , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Neoplasms, Multiple Primary/immunology , Neoplasms, Multiple Primary/therapy , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Female , Forecasting , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Male , Middle Aged , Neoplasms, Multiple Primary/diagnosis , Neoplasms, Multiple Primary/genetics , Treatment Outcome
8.
J Hepatol ; 74(6): 1386-1397, 2021 06.
Article in English | MEDLINE | ID: mdl-33484773

ABSTRACT

BACKGROUND & AIMS: The NKG2D system is a potent immunosurveillance mechanism in cancer, wherein the activating NK cell receptor (NKG2D) on immune cells recognises its cognate ligands on tumour cells. Herein, we evaluated the expression of NKG2D ligands in hepatocellular carcinoma (HCC), in both humans and mice, taking the genomic features of HCC tumours into account. METHODS: The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was analysed in large human HCC datasets by Fluidigm TaqMan and RNA-seq methods, and in 2 mouse models (mRNA and protein levels) reproducing the features of both major groups of human tumours. RESULTS: We provide compelling evidence that expression of the MICA and MICB ligands in human HCC is associated with tumour aggressiveness and poor patient outcome. We also found that the expression of ULBP1 and ULBP2 was associated with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs displaying low levels of inflammation and associated with a better prognosis. We also found an inverse correlation between ULBP1/2 expression levels and the expression of ß-catenin target genes in patients with HCC, suggesting a role for ß-catenin signalling in inhibiting expression. We showed in HCC mouse models that ß-catenin signalling downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through TCF4 binding. CONCLUSIONS: We demonstrate that the expression of NKG2D ligands is associated with aggressive liver tumorigenesis and that the downregulation of these ligands by ß-catenin signalling may account for the less aggressive phenotype of CTNNB1-mutated HCC tumours. LAY SUMMARY: The NKG2D system is a potent immunosurveillance mechanism in cancer. However, its role in hepatocellular carcinoma development has not been widely investigated. Herein, we should that the expression of NKG2D ligands by tumour cells is associated with a more aggressive tumour subtype.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/metabolism , Signal Transduction/genetics , beta Catenin/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cohort Studies , Disease Models, Animal , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Prognosis , Young Adult
9.
Liver Int ; 40(1): 74-82, 2020 01.
Article in English | MEDLINE | ID: mdl-31444947

ABSTRACT

BACKGROUND & AIMS: The recent approval of direct acting anti-virals (DAA) has dramatically changed the landscape of hepatitis C virus (HCV) therapy. Whether viral clearance could promote liver carcinogenesis is debated. It has been hypothesized that changes in intrahepatic immune surveillance following viral cure could favour tumour growth. This study aimed at characterizing the intrahepatic immune changes induced by HCV cure following DAA therapy. METHODS: Patients with compensated cirrhosis who underwent surgical resection for hepatocellular carcinoma (HCC) after sustained virological response (SVR) to DAA therapy were included. A control group of untreated HCV-infected patients with compensated cirrhosis was selected. RNA was extracted from tumoral and non-tumoral tissues and analysed using the Nanostring Immuno-Oncology-360 panel. Immune cells were quantified by immunohistochemistry. RESULTS: Twenty patients were included: 10 patients with a DAA-induced SVR and 10 untreated controls. All of them had a de novo BCLC 0/A HCC. Non-tumoral tissue profiling showed down-regulation of interferon-related genes (including MX1, ISG15 and IFIT1) after DAA therapy. No other differences in immune profiles/immune cell densities were identified between the two groups. The intra-tumoral immune profiles of HCCs that occurred after DAA therapy were not qualitatively or quantitatively different from those of tumours occurring in untreated patients. CONCLUSION: In conclusion, removal of HCV infection after DAA-based therapy results only in a down-regulation of interferon-stimulated genes in non-tumoral tissues from patients with cirrhosis who develop HCC. These minor changes in the liver immune microenvironment are unlikely to favour HCC occurrence or recurrence after DAA-induced SVR.


Subject(s)
Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Hepatitis C, Chronic/drug therapy , Liver Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Aged , Aged, 80 and over , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , Cytokines/genetics , Female , Gene Expression Profiling , Hepacivirus/genetics , Hepacivirus/immunology , Hepatitis C, Chronic/complications , Humans , Immunohistochemistry , Liver Cirrhosis/virology , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Male , Middle Aged , Myxovirus Resistance Proteins/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Sustained Virologic Response , Tumor Microenvironment , Ubiquitins/genetics
10.
Gastroenterology ; 157(5): 1368-1382, 2019 11.
Article in English | MEDLINE | ID: mdl-31336123

ABSTRACT

BACKGROUND & AIMS: Hepatic ischemia/reperfusion injury is a complication of liver surgery that involves mitochondrial dysfunction resulting from mitochondrial permeability transition pore (mPTP) opening. Cyclophilin D (PPIF or CypD) is a peptidyl-prolyl cis-trans isomerase that regulates mPTP opening in the inner mitochondrial membrane. We investigated whether and how recently created small-molecule inhibitors of CypD prevent opening of the mPTP in hepatocytes and the resulting effects in cell models and livers of mice undergoing ischemia/reperfusion injury. METHODS: We measured the activity of 9 small-molecule inhibitors of cyclophilins in an assay of CypD activity. The effects of the small-molecule CypD inhibitors or vehicle on mPTP opening were assessed by measuring mitochondrial swelling and calcium retention in isolated liver mitochondria from C57BL/6J (wild-type) and Ppif-/- (CypD knockout) mice and in primary mouse and human hepatocytes by fluorescence microscopy. We induced ischemia/reperfusion injury in livers of mice given a small-molecule CypD inhibitor or vehicle before and during reperfusion and collected samples of blood and liver for histologic analysis. RESULTS: The compounds inhibited peptidyl-prolyl isomerase activity (half maximal inhibitory concentration values, 0.2-16.2 µmol/L) and, as a result, calcium-induced mitochondrial swelling, by preventing mPTP opening (half maximal inhibitory concentration values, 1.4-132 µmol/L) in a concentration-dependent manner. The most potent inhibitor (C31) bound CypD with high affinity and inhibited swelling in mitochondria from livers of wild-type and Ppif-/- mice (indicating an additional, CypD-independent effect on mPTP opening) and in primary human and mouse hepatocytes. Administration of C31 in mice with ischemia/reperfusion injury before and during reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage compared with vehicle. CONCLUSIONS: Recently created small-molecule inhibitors of CypD reduced calcium-induced swelling in mitochondria from mouse and human liver tissues. Administration of these compounds to mice during ischemia/reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage. These compounds might be developed to protect patients from ischemia/reperfusion injury after liver surgery or for other hepatic or nonhepatic disorders related to abnormal mPTP opening.


Subject(s)
Enzyme Inhibitors/pharmacology , Liver Diseases/prevention & control , Liver/drug effects , Mitochondria, Liver/drug effects , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Peptidyl-Prolyl Isomerase F/antagonists & inhibitors , Reperfusion Injury/prevention & control , Animals , Calcium Signaling/drug effects , Cells, Cultured , Peptidyl-Prolyl Isomerase F/genetics , Peptidyl-Prolyl Isomerase F/metabolism , Cytoprotection , Disease Models, Animal , Humans , Liver/enzymology , Liver/pathology , Liver Diseases/enzymology , Liver Diseases/genetics , Liver Diseases/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/enzymology , Mitochondria, Liver/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Swelling/drug effects , Reperfusion Injury/enzymology , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Signal Transduction
11.
Clin Cancer Res ; 25(19): 5859-5865, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31358545

ABSTRACT

PURPOSE: Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is a novel morphological subtype of HCC associated with early relapse after resection or percutaneous ablation, independently of classical clinical and radiological prognostic factors. The aim of the present study was to identify immunohistochemical markers of MTM-HCC, to ease its diagnosis and implementation into clinical practice. EXPERIMENTAL DESIGN: To identify potential biomarkers of MTM-HCC, we first analyzed gene expression profiling data from The Cancer Genome Atlas study and further selected two candidate biomarkers. Performance of both biomarkers for diagnosis of MTM-HCC was further tested by immunohistochemistry in two independent series of 67 and 132 HCC biopsy samples. RESULTS: Analysis of RNA sequencing data showed that MTM-HCC was characterized by a high expression of neoangiogenesis-related genes. Two candidate biomarkers, Endothelial-Specific Molecule 1 (ESM1) and Carbonic Anhydrase IX (CAIX), were selected. In the discovery series, sensitivity and specificity of ESM1 expression by stromal endothelial cells for the detection of MTM-HCC were 97% (28/29), and 92% (35/38), respectively. Sensitivity and specificity of CAIX were 48% (14/29) and 89% (34/38). In the validation set, sensitivity and specificity of ESM1 for the identification of MTM-HCC were 93% (14/15) and 91% (107/117), respectively. Interobserver agreement for ESM1 assessment was good in both series (Cohen Kappa 0.77 and 0.76). CONCLUSIONS: Using a molecular-driven selection of biomarkers, we identified ESM1 as a reliable microenvironment immunohistochemical marker of MTM-HCC. The results represent a step toward the implementation of HCC morpho-molecular subtyping into clinical practice.


Subject(s)
Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasm Proteins/metabolism , Proteoglycans/metabolism , Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carbonic Anhydrase IX/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , Female , Gene Expression Profiling/methods , Humans , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Male , Middle Aged , Neoplasm Proteins/genetics , Prognosis , Proteoglycans/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...