Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Ther Adv Med Oncol ; 16: 17588359241242972, 2024.
Article in English | MEDLINE | ID: mdl-38736554

ABSTRACT

Background: Afatinib is indicated for advanced-stage non-small-cell lung cancer (NSCLC) with Epidermal Growth Factor Receptor (EGFR) and uncommon mutations. However, real-world studies on this topic are limited. This study aimed to evaluate afatinib as first-line therapy for locally advanced and metastatic NSCLC with uncommon EGFR mutations. Patients and methods: A retrospective study included 92 patients with advanced NSCLC with uncommon and compound EGFR mutations, treated with afatinib as first-line therapy. Patients were followed up and evaluated every 3 months or when symptoms of progressive disease arose. The endpoints were objective response rate (ORR), time-to-treatment failure (TTF), and adverse events. Results: The G719X EGFR mutation had the highest occurrence rate (53.3% for both monotherapy and the compound). By contrast, the compound mutation G719X-S768I was observed at a rate of 22.8%. The ORR was 75%, with 15.2% of patients achieving complete response. The overall median TTF was 13.8 months. Patients with the G719X EGFR mutation (single and compound) had a median TTF of 19.3 months, longer than that of patients with other mutations, who had a median TTF of 11.2 months. Patients with compound EGFR mutations (G719X and S768I) demonstrated a median TTF of 23.2 months compared to that of 12.3 months for other mutations. Tolerated doses of 20 or 30 mg achieved a longer median TTF of 17.1 months compared to 11.2 months with 40 mg. Median TTF differed between patients with and without brain metastasis, at 11.2 and 16.9 months, respectively. Rash (55.4%) and diarrhea (53.3%) were the most common adverse events, primarily grades 1 and 2. Other side effects occurred at a low rate. Conclusion: Afatinib is effective for locally advanced metastatic NSCLC with uncommon EGFR mutations. Patients with G719X, compound G719X-S768I mutations, and tolerated doses of 20 or 30 mg had a longer median TTF than those with other mutations.

2.
BMC Cancer ; 24(1): 176, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317094

ABSTRACT

BACKGROUND: This study aimed to evaluate the efficacy and side effects of first-line afatinib treatment in a real-world setting in Vietnam. METHODS: This retrospective study was conducted across nine hospitals in Vietnam. Advanced epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) patients who received afatinib as first-line therapy between April 2018 and June 2022 were included, and patient medical records were reviewed. Key outcomes were overall response rate (ORR), time-to-treatment failure (TTF), and tolerability. RESULTS: A total of 343 patients on first-line afatinib were eligible for the study. EGFR exon 19 deletion (Del19) alone was detected in 46.9% of patients, L858R mutation alone in 26.3%, and other uncommon EGFR mutations, including compound mutations, in 26.8%. Patients with brain metastases at baseline were 25.4%. Patients who received 40 mg, 30 mg, and 20 mg as starting doses of afatinib were 58.6%, 39.9%, and 1.5%, respectively. The ORR was 78.1% in the overall population, 82.6% in the Del19 mutation subgroup, 73.3% in the L858R mutation subgroup, and 75.0% in the uncommon mutation subgroup (p > 0.05). The univariate and multivariate analyses indicate that the ORR increased when the starting dose was 40 mg compared to starting doses below 40 mg (83.9% vs. 74.3%, p = 0.034). The median TTF (mTTF) was 16.7 months (CI 95%: 14.8-18.5) in all patients, with a median follow-up time of 26.2 months. The mTTF was longer in patients in the common EGFR mutation subgroup (Del19/L858R) than in those in the uncommon mutation subgroup (17.5 vs. 13.8 months, p = 0.045) and in those without versus with brain metastases at baseline (17.5 vs. 15.1 months, p = 0.049). There were no significant differences in the mTTF between subgroups based on the starting dose of 40 mg and < 40 mg (16.7 vs. 16.9 months, p > 0.05). The most common treatment-related adverse events (any grade/grade ≥ 3) were diarrhea (55.4%/3.5%), rash (51.9%/3.2%), paronychia (35.3%/5.0%), and stomatitis (22.2%/1.2%). CONCLUSIONS: Afatinib demonstrated clinical effectiveness and good tolerability in Vietnamese EGFR-mutant NSCLC patients. In our real-world setting, administering a starting dose below 40 mg might result in a reduction in ORR; however, it might not have a significant impact on TTF.


Subject(s)
Afatinib , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Afatinib/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies , Vietnam/epidemiology
3.
J Biomol Struct Dyn ; 41(23): 14003-14015, 2023.
Article in English | MEDLINE | ID: mdl-36995131

ABSTRACT

The IL-6/IL-6R or IL-6/GP130 protein-protein interactions play a significant role in controlling the development of chronic inflammatory diseases, such as rheumatoid arthritis, Castleman disease, psoriasis, and, most recently, COVID-19. Modulating or antagonizing protein-protein interactions of IL6 binding to its receptors by oral drugs promises similar efficacy to biological therapy in patients, namely monoclonal antibodies. In this study, we used a crystal structure of the Fab part of olokizumab in a complex with IL-6 (PDB ID: 4CNI) to uncover starting points for small molecule IL-6 antagonist discovery. Firstly, a structure­based pharmacophore model of the protein active site cavity was generated to identify possible candidates, followed by virtual screening with a significant database Drugbank. After the docking protocol validation, a virtual screening by molecular docking was carried out and a total of 11 top hits were reported. Detailed analysis of the best scoring molecules was performed with ADME/T analysis and molecular dynamics simulation. Furthermore, the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) technique has been utilized to evaluate the free binding energy. Based on the finding, one newly obtained compound in this study, namely DB15187, may serve as a lead compound for the discovery of IL-6 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Interleukin-6 Inhibitors , Interleukin-6 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Ligands
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555726

ABSTRACT

Antibiotic resistance has been becoming more and more critical due to bacteria's evolving hydrolysis enzymes. The NDM-1 enzyme could hydrolyze not only carbapenems but also most of ß-lactam's antibiotics and inhibitors. In fact, variant strains could impose a high impact on the resistance of bacteria producing NDM-1. Although previous studies showed the effect of some variants toward antibiotics and inhibitors binding, there has been no research systematically evaluating the effects of alternative one-point mutations on the hydrolysis capacity of NDM-1. This study aims to identify which mutants could increase or decrease the effectiveness of antibiotics and ß-lactamase inhibitors toward bacteria. Firstly, 35 different variants with a high probability of emergence based on the PAM-1 matrix were constructed and then docked with 5 ligands, namely d-captopril, l-captopril, thiorphan, imipenem, and meropenem. The selected complexes underwent molecular dynamics simulation and free energy binding estimation, with the results showing that the substitutions at residues 122 and 124 most influenced the binding ability of NDM-1 toward inhibitors and antibiotics. The H122R mutant decreases the binding ability between d-captopril and NDM-1 and diminishes the effectiveness of this antibiotic toward Enterobacteriaceae. However, the H122R mutant has a contrary impact on thiorphan, which should be tested in vitro and in vivo in further experiments.


Subject(s)
Carbapenems , beta-Lactamase Inhibitors , Carbapenems/pharmacology , Carbapenems/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Point Mutation , Captopril , Thiorphan , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactamases/metabolism , Bacteria/metabolism , Microbial Sensitivity Tests
5.
Struct Chem ; 33(5): 1707-1725, 2022.
Article in English | MEDLINE | ID: mdl-35811783

ABSTRACT

The main protease 3CLpro is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CLpro protease in the binding pocket. This study explored an in-house database of 269 chalcones as 3CLpro inhibitors using in silico screening models, including molecular docking, molecular dynamics simulation, binding free energy calculation, and ADME prediction. C264 and C235 stand out as the two most potential structures. The top hit compound C264 was with the Jamda score of -2.8329 and the MM/GBSA binding energy mean value of -28.23 ± 3.53 kcal/mol, which was lower than the reference ligand. Despite the lower mean binding energy (-22.07 ± 3.39 kcal/mol), in-depth analysis of binding interaction suggested C235 could be another potential candidate. Further, in vitro and in vivo experiments are required to confirm the inhibitory ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02000-3.

6.
Biomed Res Int ; 2022: 9982453, 2022.
Article in English | MEDLINE | ID: mdl-35378788

ABSTRACT

The human P-glycoprotein (P-gp) and the NorA transporter are the major culprits of multidrug resistance observed in various bacterial strains and cancer cell lines, by extruding drug molecules out of the targeted cells, leading to treatment failures in clinical settings. Inhibiting the activity of these efflux pumps has been a well-known strategy of drug design studies in this regard. In this manuscript, our earlier published machine learning models and homology structures of P-gp and NorA were utilized to screen a chemolibrary of 95 in-house chalcone derivatives, identifying two hit compounds, namely, F88 and F90, as potential modulators of both transporters, whose activity on Staphylococcus aureus strains overexpressing NorA and resistant to ciprofloxacin was subsequently confirmed. The findings of this study are expected to guide future research towards developing novel potent chalconic inhibitors of P-gp and/or NorA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Chalcone , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chalcone/pharmacology , Ciprofloxacin/pharmacology , Humans , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins
7.
Molecules ; 26(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071039

ABSTRACT

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Drug Resistance, Multiple/physiology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Protein Binding/drug effects , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...