Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(22): 13331-13340, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30350627

ABSTRACT

Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability ( Papp) of <5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction ( Papp,efflux/ Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo.


Subject(s)
Biological Transport/physiology , Colon/physiology , Epithelium/physiology , Tissue Engineering/methods , Animals , Atenolol/metabolism , Caco-2 Cells , Chickens , Collagen/chemistry , Humans , Mice , Propranolol/metabolism , Rhodamine 123/metabolism , Riboflavin/metabolism
2.
Cell Mol Gastroenterol Hepatol ; 5(2): 113-130, 2018.
Article in English | MEDLINE | ID: mdl-29693040

ABSTRACT

BACKGROUND & AIMS: The successful culture of intestinal organoids has greatly enhanced our understanding of intestinal stem cell physiology and enabled the generation of novel intestinal disease models. Although of tremendous value, intestinal organoid culture systems have not yet fully recapitulated the anatomy or physiology of the in vivo intestinal epithelium. The aim of this work was to re-create an intestinal epithelium with a high density of polarized crypts that respond in a physiologic manner to addition of growth factors, metabolites, or cytokines to the basal or luminal tissue surface as occurs in vivo. METHODS: A self-renewing monolayer of human intestinal epithelium was cultured on a collagen scaffold microfabricated with an array of crypt-like invaginations. Placement of chemical factors in either the fluid reservoir below or above the cell-covered scaffolding created a gradient of that chemical across the growing epithelial tissue possessing the in vitro crypt structures. Crypt polarization (size of the stem/proliferative and differentiated cell zones) was assessed in response to gradients of growth factors, cytokines, and bacterial metabolites. RESULTS: Chemical gradients applied to the shaped human epithelium re-created the stem/proliferative and differentiated cell zones of the in vivo intestine. Short-chain fatty acids applied as a gradient from the luminal side confirmed long-standing hypotheses that butyrate diminished stem/progenitor cell proliferation and promoted differentiation into absorptive colonocytes. A gradient of interferon-γ and tumor necrosis factor-α significantly suppressed the stem/progenitor cell proliferation, altering crypt formation. CONCLUSIONS: The in vitro human colon crypt array accurately mimicked the architecture, luminal accessibility, tissue polarity, cell migration, and cellular responses of in vivo intestinal crypts.

3.
Anal Chem ; 90(3): 1941-1950, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29281259

ABSTRACT

Enterotoxins increase intestinal fluid secretion through modulation of ion channels as well as activation of the enteric nervous and immune systems. Colonic organoids, also known as colonoids, are functionally and phenotypically similar to in vivo colonic epithelium and have been used to study intestinal ion transport and subsequent water flux in physiology and disease models. In conventional cultures, organoids exist as spheroids embedded within a hydrogel patty of extracellular matrix, and they form at multiple depths, impairing efficient imaging necessary to capture data from statistically relevant sample sizes. To overcome these limitations, an analytical platform with colonic organoids localized to the planar surface of a hydrogel layer was developed. The arrays of densely packed colonoids (140 µm average diameter, 4 colonoids/mm2) were generated in a 96-well plate, enabling assay of the response of hundreds of organoids so that organoid subpopulations with distinct behaviors were identifiable. Organoid cell types, monolayer polarity, and growth were similar to those embedded in hydrogel. An automated imaging and analysis platform efficiently tracked over time swelling due to forskolin and fluid movement across the cell monolayer stimulated by cholera toxin. The platform was used to screen compounds associated with the enteric nervous and immune systems for their effect on fluid movement across epithelial cells. Prostaglandin E2 promoted increased water flux in a subset of organoids that resulted in organoid swelling, confirming a role for this inflammatory mediator in diarrheal conditions but also illustrating organoid differences in response to an identical stimulus. By allowing sampling of a large number of organoids, the arrayed organoid platform permits identification of organoid subpopulations intermixed within a larger group of nonresponding organoids. This technique will enable automated, large-scale screening of the impact of drugs, toxins, and other compounds on colonic physiology.


Subject(s)
Colon/cytology , Enterotoxins/metabolism , Organoids/cytology , Secretagogues/analysis , Tissue Array Analysis/methods , Animals , Cholera Toxin/metabolism , Colon/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Organoids/metabolism , Secretagogues/immunology , Tissue Culture Techniques/methods
4.
ACS Biomater Sci Eng ; 3(10): 2502-2513, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-30854421

ABSTRACT

Organoid culture has had a significant impact on in vitro studies of the intestinal epithelium; however, the exquisite architecture, luminal accessibility, and lineage compartmentalization found in vivo has not been recapitulated in the organoid systems. We have used a microengineered platform with suitable extracellular matrix contacts and stiffness to generate a self-renewing mouse colonic epithelium that replicates key architectural and physiological functions found in vivo, including a surface lined with polarized crypts. Chemical gradients applied to the basal-luminal axis compartmentalized the stem/progenitor cells and promoted appropriate lineage differentiation along the in vitro crypt axis so that the tissue possessed a crypt stem cell niche as well as a layer of differentiated cells covering the luminal surface. This new approach combining microengineered scaffolds, native chemical gradients, and biophysical cues to control primary epithelium ex vivo can serve as a highly functional and physiologically relevant in vitro tissue model.

SELECTION OF CITATIONS
SEARCH DETAIL
...