Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37788099

ABSTRACT

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-ß receptor 1 (TGF-ßR1), which in turn leads to activation of canonical TGF-ß signaling in both GSCs and NPCs. TGF-ß signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-ß pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-ßR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Glioblastoma/pathology , Neuropilin-1/genetics , Brain Neoplasms/pathology , Transforming Growth Factor beta
2.
Cancer Cell ; 41(8): 1480-1497.e9, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37451272

ABSTRACT

Radiation therapy (RT) provides therapeutic benefits for patients with glioblastoma (GBM), but inevitably induces poorly understood global changes in GBM and its microenvironment (TME) that promote radio-resistance and recurrence. Through a cell surface marker screen, we identified that CD142 (tissue factor or F3) is robustly induced in the senescence-associated ß-galactosidase (SA-ßGal)-positive GBM cells after irradiation. F3 promotes clonal expansion of irradiated SA-ßGal+ GBM cells and orchestrates oncogenic TME remodeling by activating both tumor-autonomous signaling and extrinsic coagulation pathways. Intratumoral F3 signaling induces a mesenchymal-like cell state transition and elevated chemokine secretion. Simultaneously, F3-mediated focal hypercoagulation states lead to activation of tumor-associated macrophages (TAMs) and extracellular matrix (ECM) remodeling. A newly developed F3-targeting agent potently inhibits the aforementioned oncogenic events and impedes tumor relapse in vivo. These findings support F3 as a critical regulator for therapeutic resistance and oncogenic senescence in GBM, opening potential therapeutic avenues.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Thromboplastin , Cell Line, Tumor , Neoplasm Recurrence, Local , Signal Transduction , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Tumor Microenvironment
3.
Sci Rep ; 12(1): 19842, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400883

ABSTRACT

COVID-19 is a highly contagious respiratory infection caused by the SARS-CoV-2 virus. The infected lung epithelial cells secrete a group of chemokines and cytokines, which triggers harmful cytokine storms and hyper-thrombotic responses. Recent studies have proposed that viral-induced senescence is responsible for cytokine release and inflammation in COVID-19 patients. However, it is unknown whether cellular senescence is commonly triggered after viral infection and how inflammation and thrombosis, hyper-activated in these patients, are functionally connected. To address these questions, we conducted a bioinformatics-based meta-analysis using single-cell and bulk RNA sequencing datasets obtained from human patient studies, animal models, and cell lines infected with SARS-CoV-2 and other respiratory viruses. We found that the senescence phenotype is robustly upregulated in most SARS-CoV-2-infected patients, especially in the infected lung epithelial cells. Notably, the upregulation of Tissue factor (F3), a key initiator of the extrinsic blood coagulation pathway, occurs concurrently with the upregulation of the senescence-associated secretory phenotype (SASP) factors. Furthermore, F3 levels are positively correlated with the senescence and hyper-coagulation gene signatures in COVID-19 patients. Together, these data demonstrate the prevalence of senescence in respiratory viral infection and suggest F3 as a critical link between inflammation, thrombosis, and senescence in these disease states.


Subject(s)
COVID-19 , Thrombosis , Humans , Animals , Thromboplastin/genetics , SARS-CoV-2 , Inflammation , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL