Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16898-16909, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38833268

ABSTRACT

Alzheimer's disease is one of the causes associated with the early stages of dementia. Nowadays, the main treatment available is to inhibit the actions of the acetylcholinesterase (AChE) enzyme, which has been identified as responsible for the disease. In this study, computational methods were used to examine the structure and therapeutic ability of chemical compounds extracted from Millettia brandisiana natural products against AChE. This plant is commonly known as a traditional medicine in Vietnam and Thailand for the treatment of several diseases. Furthermore, machine learning helped us narrow down the choice of 85 substances for further studies by molecular docking and molecular dynamics simulations to gain deeper insights into the interactions between inhibitors and disease proteins. Of the five top-choice substances, γ-dimethylallyloxy-5,7,2,5-tetramethoxyisoflavone emerges as a promising substance due to its large free binding energy to AChE and the high thermodynamic stability of the resulting complex.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Millettia , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Millettia/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Humans , Thermodynamics
2.
Mol Genet Genomic Med ; 11(12): e2263, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37547970

ABSTRACT

BACKGROUND: Brugada syndrome (BrS) is a rare genetic disease that causes sudden cardiac death (SCD) and arrhythmia. SCN5A pathogenic variants (about 30% of diagnosed patients) are responsible for BrS. AIMS: Lack of knowledge regarding molecular characteristics and the correlation between genotype and phenotype interfere with the risk stratification and finding the optimal treatment in Vietnam. Therefore, we identified SCN5A variants and evaluated the genotype-phenotype correlation of BrS on 117 Vietnamese probands. MATERIALS AND METHODS: The clinical characteristics and blood samples of BrS patients were collected. To determine SCN5A variants, Sanger sequencing was conducted, and subsequently, these variants were analyzed by bioinformatic tools. RESULTS: In this cohort, the overall rate of detected variants in SCN5A was 25.6%, which could include both pathogenic and benign variants. In genetic testing, 21 SCN5A variants were identified, including eight novels and 15 published variants. Multiple bioinformatic tools were used to predict variant effect with c.551A>G, c.1890+14G>A, c.3338C>T, c.3578G>A, and c.5484C>T as benign, while other variants were predicted as disease-causing. The family history of SCD (risk ratio [RR] = 4.324, 95% CI: 2.290-8.269, p < 0.001), syncope (RR = 3.147, 95% CI: 1.668-5.982, p = 0.0004), and ventricular tachycardia/ventricular fibrillation (RR = 3.406, 95% CI: 1.722-5.400, p = 0.0035) presented a significantly higher risk in the SCN5A (+) group, consisting of individuals carrying any variant in the SCN5A gene, compared to SCN5A (-) individuals. CONCLUSION: The results contribute to clarifying the impact of SCN5A variants on these phenotypes. Further follow-up studies need to be carried out to understand the functional effects of these SCN5A variants on the severity of BrS.


Subject(s)
Brugada Syndrome , Humans , Brugada Syndrome/genetics , Brugada Syndrome/complications , Mutation , Genotype , Genetic Testing , Genetic Association Studies , Ventricular Fibrillation , Death, Sudden, Cardiac/etiology , NAV1.5 Voltage-Gated Sodium Channel/genetics
SELECTION OF CITATIONS
SEARCH DETAIL