Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(12): 1530, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006447

ABSTRACT

ZSM-5 zeolite was successfully synthesized from bentonite clay sourced from Lam Dong Province, Vietnam, using the hydrothermal method at 170 °C for 18 h. The synthesized ZSM-5 (SiO2/Al2O3 ratio ~ 34) exhibited a single phase with high crystallinity (91.8%), and a clear and uniform shape. In a detailed examination of the synthesized material's Pb(II) adsorptive capacity, various factors were taken into account, including pH, interaction time, ionic strength, and the amount of adsorbent. Isotherms and kinetics were examined to elucidate the uptake behavior. Study results suggested that Pb(II) ion uptake by ZSM-5 was most appropriately described by the Sips isotherm and intraparticle diffusion kinetic models. The calculated maximum monolayer adsorption capacity according to the Langmuir isotherm model was 48.36 mg/g. Furthermore, the adsorption mechanisms of Pb(II) on ZSM-5 involving electrostatic interactions, ion exchange, and diffusion into pores were demonstrated using the analytical techniques before and after Pb(II) adsorption. These findings demonstrate that ZSM-5 synthesized from bentonite clay exhibits an excellent adsorption capacity for Pb(II), resulting in promising applications for treating drinking water or aqueous industrial waste containing Pb(II) ions.


Subject(s)
Bentonite , Clay , Water Pollutants, Chemical , Adsorption , Environmental Monitoring , Hydrogen-Ion Concentration , Kinetics , Lead , Silicon Dioxide , Southeast Asian People , Vietnam , Water , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 195(11): 1266, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787870

ABSTRACT

Kinetic studies play an instrumental role in determining the most appropriate reaction rate model for industrial-scale applications. This study focuses on the kinetics of methylene blue (MB) adsorption from aqueous solutions by biochar derived from jackfruit peel. Various kinetic models, including pseudo-first-order (PFO), pseudo-second-order (PSO), intra-diffusion, and Elovich models, were applied to study MB adsorption kinetics of jackfruit peel biochar. The experiments were performed with two initial concentrations of MB (24.23 mg/L and 41.42 mg/L) over a span of 240 min. Our findings emphasized that the Elovich model provided the best fit of the experimental data for MB adsorption. When compared to other materials, biochar from jackfruit peel emerges as an eco-friendly adsorbent for dye decolorization, with potential applications in the treatment of environmental pollution.


Subject(s)
Artocarpus , Water Pollutants, Chemical , Methylene Blue , Kinetics , Hydrogen-Ion Concentration , Environmental Monitoring , Water , Adsorption
3.
RSC Adv ; 13(30): 20565-20574, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37435373

ABSTRACT

In the present study, Lam Dong bentonite clay was utilized as a novel resource to effectively synthesize microporous ZSM-5 zeolite (Si/Al ∼ 40). The effects of aging and hydrothermal treatment on the crystallization of ZSM-5 were carefully investigated. Herein, the aging temperatures of RT, 60, and 80 °C at time intervals of 12, 36, and 60 h, followed by high temperature hydrothermal treatment (170 °C) for 3-18 h were studied. Techniques such as XRD, SEM-EDX, FTIR, TGA-DSC, and BET-BJH were applied to characterize the synthesized ZSM-5. Bentonite clay showed great benefits as a natural resource for ZSM-5 synthesis and is cost efficient, environment friendly, and has a large reserves. The form, size, and crystallinity of ZSM-5 were greatly influenced by aging and hydrothermal treatment conditions. The optimal ZSM-5 product had high purity, crystallinity (∼90%), and porosity (BET ∼380 m2 g-1) as well as thermal stability, which are beneficial for adsorptive and catalytic applications.

4.
Environ Monit Assess ; 195(2): 254, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36592254

ABSTRACT

This study used red mud modified with chitosan (RM/CS) as a novel adsorbent to remove Ni(II) ions from an aqueous solution. The adsorbent was characterized by the techniques of the BET method, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. According to the findings, the surface area of RM/CS is nearly doubled compared to CS, from 68.6 to 105.7 m2.g-1. The Ni(II) batch adsorption of RM/CS was performed as a function of pH value, contact time, and volume of adsorbent. Three isotherm adsorption models (Langmuir, Freundlich, and Sips) and three kinetic models (the pseudo-first-order, the pseudo-second-order, and the intra-diffusion models) were fitted with the experimental data to calculate the maximum adsorption capacity and to estimate the uptake in nature. The Langmuir monolayer adsorption capacity for Nickel (II) is 31.66 mg.g-1 at a pH of 6.0, with an adsorption time of 180 min and a temperature of 323 K. The Ni(II) adsorption on RM/CS is the exothermic process and is controlled by the intra-diffusion model.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Environmental Monitoring , Nickel/chemistry , Temperature , Ions , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Thermodynamics
5.
Chemosphere ; 286(Pt 3): 131766, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416581

ABSTRACT

This work studies the Pb(II) removal onto bentonite clay modified by hexadecyl trimethyl ammonium bromide (HDTMA). Characterizations of the unmodified and modified materials were performed by using XRD, SEM, TG-DSC, FT-IR, and BET surface area analyses. Factors influencing the uptake of Pb(II) from aqueous solution, such as pHsolution, ion strength, uptake time, adsorbent dosage, and initial Pb(II) concentration, were examined. The obtained results showed that bentonite clay was successfully modified by HDTMA, resulting in an increase in its surface area by about 70 %. The Pb(II) adsorption onto modified bentonite clay reached equilibrium at pH = 5.0 after 120 min. Studies within the isotherm and kinetic models demonstrated that the adsorption followed the Sips isotherm and pseudo-second-order kinetic models. The maximum monolayer adsorption capacity calculated from the Langmuir model at 30 °C was 25.8 mg/g, which is much higher than that obtained for the unmodified sample (18.9 mg/g). The FT-IR and TG-DSC analyses indicated that the formation of inner-sphere complexes plays a fundamental role in the mechanism of Pb(II) uptake onto HDTMA-bentonite clay. This mechanism of Pb(II) adsorption was further investigated, for the first time, by using the positron annihilation lifetime (PAL) and electron momentum (EMD) measurements. The PAL and EMD analyses indicated that the existence of Al and Si mono-vacancies in the HDTMA-bentonite should have essential contributions to the adsorption mechanism. In particular, we found a very interesting mechanism that the Pb(II) adsorption should occur inside the interlayer spaces of the HDTMA-bentonite.


Subject(s)
Bentonite , Water Pollutants, Chemical , Clay , Lead , Spectroscopy, Fourier Transform Infrared
6.
Chemosphere ; 287(Pt 3): 132279, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34563768

ABSTRACT

Red mud modified by chitosan (RM/CS) was utilized as an adsorbent to effectively remove Pb(II) from aqueous solution. The surface area of RM/CS was found to significantly increase by more than 50% compared to that of original red mud. Different factors that affected the Pb(II) removal on this material, such as initial Pb(II) concentration, pH, and contact time, were investigated. The pseudo-first-order, pseudo-second-order, and intra-diffusion models were used to fit the experimental data to investigate the Pb(II)'s removal kinetics. The Pb(II) removal followed the intra-diffusion model. Additionally, the non-zero C value obtained from this model indicates that the removal was controlled by many different mechanisms. We also found that the interaction of Pb(II) and carbonate group on the material's surface played a primary role once the adsorption equilibrium was reached. Finally, the maximum adsorptive capacity was found to be about 209 mg/g. This obtained value is higher than those obtained for some other materials. Therefore, the present RM/CS should be a potential material for removing Pb(II) from aqueous solution.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead
7.
J Anal Methods Chem ; 2021: 6613154, 2021.
Article in English | MEDLINE | ID: mdl-33708452

ABSTRACT

The present paper reports the fabrication of inverse opal photonic crystals (IOPCs) by using SiO2 spherical particles with a diameter of 300 nm as an opal photonic crystal template and poly(ethylene glycol) diacrylate (PEGDA) as an inverse opal material. Characteristics and fluorescence properties of the fabricated IOPCs were investigated by using the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), reflection spectroscopy, and fluorescence microscopy. The results clearly showed that the IOPCs were formed comprising of air spheres with a diameter of ∼270 nm. The decrease in size led to a decrease in the average refractive indexes from 1.40 to 1.12, and a remarkable stopband blue shift for the IOPCs was thus achieved. In addition, the obtained results also showed a fluorescence enhancement over 7.7-fold for the Fluor® 488 dye infiltrated onto the IOPCs sample in comparison with onto the control sample.

8.
Sensors (Basel) ; 19(15)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362368

ABSTRACT

The gas sensing properties of two novel series of Mg-incorporated metal-organic frameworks (MOFs), termed Mg-MOFs-I and -II, were assessed. The synthesized iso-reticular type Mg-MOFs exhibited good crystallinity, high thermal stability, needle-shape morphology and high surface area (up to 2900 m2·g-1), which are promising for gas sensing applications. Gas-sensing studies of gas sensors fabricated from Mg-MOFs-II revealed better sensing performance, in terms of the sensor dynamics and sensor response, at an optimal operating temperature of 200 °C. The MOF gas sensor with a larger pore size and volume showed shorter response and recovery times, demonstrating the importance of the pore size and volume on the kinetic properties of MOF-based gas sensors. The gas-sensing results obtained in this study highlight the potential of Mg-MOFs gas sensors for the practical monitoring of toxic gases in a range of environments.

SELECTION OF CITATIONS
SEARCH DETAIL