Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 845
Filter
1.
Article in English | MEDLINE | ID: mdl-38958657

ABSTRACT

Novel Gram-positive, catalase-negative, α-haemolytic cocci were isolated from breast milk samples of healthy mothers living in Hanoi, Vietnam. The 16S rRNA gene sequences of these strains varied by 0-2 nucleotide polymorphisms. The 16S rRNA gene sequence of one strain, designated as BME SL 6.1T, showed the highest similarity to those of Streptococcus salivarius NCTC 8618T (99.4 %), Streptococcus vestibularis ATCC 49124T (99.4 %), and Streptococcus thermophilus ATCC 19258T (99.3 %) in the salivarius group. Whole genome sequencing was performed on three selected strains. Phylogeny based on 631 core genes clustered the three strains into the salivarius group, and the strains were clearly distinct from the other species in this group. The average nucleotide identity (ANI) value of strain BME SL 6.1T exhibited the highest identity with S. salivarius NCTC 8618T (88.4 %), followed by S. vestibularis ATCC 49124T (88.3 %) and S. thermophilus ATCC 19258T (87.4 %). The ANI and digital DNA-DNA hybridization values between strain BME SL 6.1T and other species were below the cut-off value (95 and 70 %, respectively), indicating that it represents a novel species of the genus Streptococcus. The strains were able to produce α-galactosidase and acid from raffinose and melibiose. Therefore, we propose to assign the strains to a new species of the genus Streptococcus as Streptococcus raffinosi sp. nov. The type strain is BME SL 6.1T (=VTCC 12812T=NBRC 116368T).


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Milk, Human , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Vietnam , Whole Genome Sequencing
2.
Nat Prod Res ; : 1-8, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949646

ABSTRACT

Recent research has indicated that Panax notoginseng saponins (PNS) extracted from the radix of Panax notoginseng (Burkill) F. H. Chen exert antidepressant effects. This study aimed to assess the antidepressive effects of ginsenoside Rg1 and PNS in a depression model induced by chronic unpredictable mild stress (CUMS). Over a period of three weeks, rats were administered ginsenoside Rg1 at a dose of 30 mg/kg and PNS at dosages ranging from 100 to 200 mg/kg body weight per day. To assess how ginsenoside Rg1 and PNS influence depression-like behaviours in rats, various assessments were conducted, including coat state evaluation, forced swim test, and elevated plus maze test. The levels of cortisol and testosterone in serum samples were analysed using the liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method. LC-ESI-MS/MS method provides precise and accurate results. The lower limit of quantification values for cortisol and testosterone were determined as 100 and 2 pg/mL, respectively. Our data demonstrated that both ginsenoside Rg1 and PNS significantly reversed depression-like behaviour in rats by improving coat condition, reducing immobility time in the forced swim test, and increasing time spent in the open arms of the elevated plus maze test. Furthermore, ginsenoside Rg1 and PNS exhibited a regulatory effect on cortisol and testosterone levels in plasma. These findings suggest that ginsenoside Rg1 and PNS may be potential antidepressants in clinical treatment.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38975891

ABSTRACT

Unsupervised feature selection is a critical step for efficient and accurate analysis of single-cell RNA-seq data. Previous benchmarks used two different criteria to compare feature selection methods: (i) proportion of ground-truth marker genes included in the selected features and (ii) accuracy of cell clustering using ground-truth cell types. Here, we systematically compare the performance of 11 feature selection methods for both criteria. We first demonstrate the discordance between these criteria and suggest using the latter. We then compare the distribution of selected genes in their means between feature selection methods. We show that lowly expressed genes exhibit seriously high coefficients of variation and are mostly excluded by high-performance methods. In particular, high-deviation- and high-expression-based methods outperform the widely used in Seurat package in clustering cells and data visualization. We further show they also enable a clear separation of the same cell type from different tissues as well as accurate estimation of cell trajectories.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Cluster Analysis , Humans , Gene Expression Profiling/methods , Algorithms , Computational Biology/methods , Sequence Analysis, RNA/methods , RNA-Seq/methods
4.
Eur Cardiol ; 19: e05, 2024.
Article in English | MEDLINE | ID: mdl-38983579

ABSTRACT

Background: AF is a global health concern, with systemic complications including renal dysfunction. This systematic review and meta-analysis compares the effects of rivaroxaban, a Factor Xa inhibitor, and vitamin K antagonists (VKAs) on renal outcomes in AF patients. Methods: The study protocol is registered in PROSPERO (ID: CRD42023462756). We systematically searched the PubMed, Embase and Cochrane Library databases from 1 January 2017 to 30 June 2023 for real-world studies comparing the effects of rivaroxaban and VKAs on renal outcomes in AF patients, including acute kidney injury, a .30% decrease in estimated glomerular filtration rate, doubling of serum creatinine and worsening renal function. Subgroup analyses targeted diabetes, pre-existing kidney disease, the elderly (age .65 years) and Asian populations. The risk of bias was assessed used the Robins-I tool. HRs and 95% CIs were synthesised through a random-effects model. Two sensitivity analyses were performed, using a fixed-effects model and excluding conference abstracts. Results: We identified 1,666 records. After screening, 14 studies comparing rivaroxaban and VKAs were included. Rivaroxaban exhibited superiority over VKAs in preventing: acute kidney injury (HR 0.68; 95% CI [0.61.0.77]; p<0.00001); a .30% decrease in estimated glomerular filtration rate (HR 0.71; 95% CI [0.60.0.84]; p<0.0001); doubling of serum creatinine (HR 0.50; 95% CI [0.36.0.70]; p<0.0001); and worsening renal function (HR 0.56; 95% CI [0.45.0.69]; p<0.00001). Subgroup and sensitivity analyses consistently confirmed rivaroxaban's favourable effects on renal outcomes in diabetes, pre-existing kidney disease, the elderly and Asian populations. Conclusion: Our findings support the preference of rivaroxaban over VKAs for renal outcomes in AF. The findings endorse rivaroxaban as the preferred anticoagulant to mitigate renal complications, offering clinicians valuable insights for tailored strategies.

5.
PLoS One ; 19(6): e0304964, 2024.
Article in English | MEDLINE | ID: mdl-38885215

ABSTRACT

Austronesian (AN) is the second-largest language family in the world, particularly widespread in Island Southeast Asia (ISEA) and Oceania. In Mainland Southeast Asia (MSEA), groups speaking these languages are concentrated in the highlands of Vietnam. However, our knowledge of the spread of AN-speaking populations in MSEA remains limited; in particular, it is not clear if AN languages were spread by demic or cultural diffusion. In this study, we present and analyze new data consisting of complete mitogenomes from 369 individuals and 847 Y-chromosomal single nucleotide polymorphisms (SNPs) from 170 individuals from all five Vietnamese Austronesian groups (VN-AN) and five neighboring Vietnamese Austroasiatic groups (VN-AA). We found genetic signals consistent with matrilocality in some, but not all, of the VN-AN groups. Population affinity analyses indicated connections between the AN-speaking Giarai and certain Taiwanese AN groups (Rukai, Paiwan, and Bunun). However, overall, there were closer genetic affinities between VN-AN groups and neighboring VN-AA groups, suggesting language shifts. Our study provides insights into the genetic structure of AN-speaking communities in MSEA, characterized by some contact with Taiwan and language shift in neighboring groups, indicating that the expansion of AN speakers in MSEA was a combination of cultural and demic diffusion.


Subject(s)
Chromosomes, Human, Y , Language , Polymorphism, Single Nucleotide , Humans , Vietnam , Female , Male , Chromosomes, Human, Y/genetics , Sexism , DNA, Mitochondrial/genetics , Genetics, Population
6.
Xenobiotica ; : 1-20, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38833509

ABSTRACT

We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products.Numerous in silico methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation.Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation).All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes.Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including haematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity.The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression.An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic.Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys).Future research directions may involve experimental validation of in silico predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions.These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.


Key properties & pharmacokinetics of 3PBA & its metabolites were reportedMetabolite products from methylation were predominant and more toxicMain toxics: haematemesis, reproductive dysfunction, toxic respiration, dermatitis.

7.
Mol Cell Proteomics ; 23(8): 100809, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936775

ABSTRACT

Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.

8.
Theriogenology ; 226: 158-166, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38901215

ABSTRACT

Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3-6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.


Subject(s)
Cell Survival , Cumulus Cells , Meiosis , Oocytes , Oxazines , Animals , Cumulus Cells/physiology , Oocytes/physiology , Swine , Female , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Staining and Labeling/methods
9.
Clin Chim Acta ; 561: 119819, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38901629

ABSTRACT

Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.


Subject(s)
Metabolic Syndrome , Metabolic Syndrome/metabolism , Humans , Biomarkers/metabolism
10.
Environ Geochem Health ; 46(7): 219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849667

ABSTRACT

This study investigates the removal of amoxicillin micropollutants (AM) from hospital wastewater using CoMoO4-modified graphitic carbon nitride (CMO/gCN). Consequently, CMO/gCN exhibits notable improvements in visible light absorption and electron-hole separation rates compared to unmodified gCN. Besides, CMO/gCN significantly enhances the removal efficiency of AM, attaining an impressive 96.5%, far surpassing the performance of gCN at 48.6%. Moreover, CMO/gCN showcases outstanding reusability, with AM degradation performance exceeding 70% even after undergoing six cycles of reuse. The removal mechanism of AM employing CMO/gCN involves various photoreactions of radicals (•OH, •O2-) and amoxicillin molecules under light assistance. Furthermore, CMO/gCN demonstrates a noteworthy photodegradation efficiency of AM from hospital wastewater, reaching 92.8%, with a near-complete reduction in total organic carbon levels. Detailed discussions on the practical applications of the CMO/gCN photocatalyst for removal of micropollutants from hospital wastewater are provided. These findings underline the considerable potential of CMO/gCN for effectively removing various pollutants in environmental remediation strategies.


Subject(s)
Amoxicillin , Graphite , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Amoxicillin/chemistry , Wastewater/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Photolysis , Hospitals , Nitrogen Compounds/chemistry , Catalysis , Water Purification/methods
11.
Toxicol Res ; 40(3): 389-408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911537

ABSTRACT

Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3ß/p-tau/amyloid-ß), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00228-1.

12.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915701

ABSTRACT

Purpose: ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. Here we report a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3 found in 2 patients with childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS). Methods: Genetic testing via exome sequencing was used to identify the underlying disease cause in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. Studies in a cell culture model uncover biochemical and cellular consequences of the identified genetic change. Results: The ARH3 H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and reduced expression. ARH3 H182R additionally fails to localize to the nucleus. The combination of reduced expression and mislocalization of ARH3 H182R resulted in accumulation of mono-ADP ribosylated species in cells. Conclusions: The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.

13.
Microbiol Spectr ; : e0095924, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916311

ABSTRACT

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve to give rise to variants of concern that can escape vaccine-induced immunity. As such, more effective vaccines are urgently needed. In this study, we evaluated virus-like particle (VLP) as a vaccine platform for SARS-CoV-2. The spike, envelope, and membrane proteins of the SARS-CoV-2 Wuhan strain were expressed by a single recombinant baculovirus BacMam and assembled into VLPs in cell culture. The morphology and size of the SARS-CoV-2 VLP as shown by transmission electron microscopy were similar to the authentic SARS-CoV-2 virus particle. In a mouse trial, two intramuscular immunizations of the VLP BacMam with no adjuvant elicited spike-specific binding antibodies in both sera and bronchoalveolar lavage fluids. Importantly, BacMam VLP-vaccinated mouse sera showed neutralization activity against SARS-CoV-2 spike pseudotyped lentivirus. Our results indicated that the SARS-CoV-2 VLP BacMam stimulated spike-specific immune responses with neutralization activity. IMPORTANCE: Although existing vaccines have significantly mitigated the impact of the COVID-19 pandemic, none of the vaccines can induce sterilizing immunity. The spike protein is the main component of all approved vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due primarily to its ability to induce neutralizing antibodies. The conformation of the spike protein in the vaccine formulation should be critical for the efficacy of a vaccine. By way of closely resembling the authentic virions, virus-like particles (VLPs) should render the spike protein in its natural conformation. To this end, we utilized the baculovirus vector, BacMam, to express virus-like particles consisting of the spike, membrane, and envelope proteins of SARS-CoV-2. We demonstrated the immunogenicity of our VLP vaccine with neutralizing activity. Our data warrant further evaluation of the virus-like particles as a vaccine candidate in protecting against virus challenges.

14.
J Fish Biol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747400

ABSTRACT

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.

15.
Phys Rev Lett ; 132(17): 173802, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728718

ABSTRACT

In this Letter, we theoretically propose and experimentally demonstrate the formation of a super bound state in a continuum (BIC) on a photonic crystal flat band. This unique state simultaneously exhibits an enhanced quality factor and near-zero group velocity across an extended region of the Brillouin zone. It is achieved at the topological transition when a symmetry-protected BIC pinned at k=0 merges with two Friedrich-Wintgen quasi-BICs, which arise from the destructive interference between lossy photonic modes of opposite symmetries. As a proof of concept, we employ the ultraflat super BIC to demonstrate three-dimensional optical trapping of individual particles. Our findings present a novel approach to engineering both the real and imaginary components of photonic states on a subwavelength scale for innovative optoelectronic devices.

16.
Blood Cancer Discov ; 5(4): 276-297, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38713018

ABSTRACT

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.


Subject(s)
Calgranulin B , Chromosomes, Human, Pair 8 , Myeloproliferative Disorders , Proto-Oncogene Proteins c-myc , Trisomy , Chromosomes, Human, Pair 8/genetics , Humans , Trisomy/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Animals , Mice , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Signal Transduction/genetics
19.
RSC Adv ; 14(23): 16445-16458, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774611

ABSTRACT

Using DFT calculations, the structural and electronic properties of the ZZ7 p-PdSe2 nanoribbons (ZZ7) with the four kinds of vacancy defects, including ZZ7-VPd, ZZ7-VSe, ZZ7-VPd+Se, and ZZ7-V2Se are studied, in which their stability, diverse geometries, and altered electronic properties are determined through the formation energies, optimal structural parameters, electronic band structures, and DOSs. Specifically, the formation energies of all studied systems show significant negative values around -3.9 eV, evidencing their good thermal stability. The geometries of four defective structures exhibit different diversification, whereas only the ZZ7-V2Se structure possesses the highly enhanced feature, identified as the most effective substrate for the acetone and acetonitrile adsorption. On the electronic behaviors, the ZZ7 band structure displays the nonmagnetic metallic characteristics that become the ferromagnetic half-metallic band structures for the ZZ7-VPd and ZZ7-VSe and the ferromagnetic semi-metallic band structures for the ZZ7-VPd+Se and ZZ7-V2Se. For adsorption of the acetone and acetonitrile on the ZZ7-V2Se structure, the energetic stability, adsorption sites, adsorption distances, charge transfers, and electronic characteristics of the adsorbed systems are determined by the adsorption energies, optimal adsorption sites, adsorption distances, Mulliken populations, and DOSs. The adsorption energies of the acetone- and acetonitrile-adsorbed ZZ7-V2Se systems display significant values at -1.2 eV and -0.86 eV at the preferable sites of 8 and 11, respectively, indicating their great adsorption ability. The adsorption mechanism of the acetone- and acetonitrile-adsorbed systems belongs to the physisorption owing to absence of chemical bonds, in which the bond lengths of the ZZ7-V2Se substrate show a very small deviation. Under the acetone and acetonitrile adsorptions, the ferromagnetic semi-metallic DOSs of the ZZ7-V2Se become the ferromagnetic half-metallic DOSs for the ZZ7-V2Se-acetone-8 and the ferromagnetic semiconducting DOSs for the ZZ7-V2Se-acetonitrile-11. Our systematic results can provide a complete understanding of the acetone- and acetonitrile adsorptions on the potential ZZ7-V2Se structure, which is very useful for nanosensor application.

20.
Opt Lett ; 49(9): 2465-2468, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691745

ABSTRACT

Light-matter interaction between quantum emitters and optical cavities plays a vital role in fundamental quantum photonics and the development of optoelectronics. Resonant metasurfaces are proven to be an efficient platform for tailoring the spontaneous emission (SE) of the emitters. In this work, we study the interplay between quasi-2D perovskites and dielectric TiO2 metasurfaces. The metasurface, functioning as an open cavity, enhances electric fields near its plane, thereby influencing the emissions of the perovskite. This is verified through angle-resolved photoluminescence (PL) studies. We also conducted reflectivity measurements and numerical simulations to validate the coupling between the quasi-2D perovskites and photonic modes. Notably, our work introduces a spatial mapping approach to study Purcell enhancement. Using fluorescence lifetime imaging microscopy (FLIM), we directly link the PL and lifetimes of the quasi-2D perovskites in spatial distribution when positioned on the metasurface. This correlation provides unprecedented insights into emitter distribution and emitter-resonator interactions. The methodology opens a new (to the best of our knowledge) approach for studies in quantum optics, optoelectronics, and medical imaging by enabling spatial mapping of both PL intensity and lifetime, differentiating between uncoupled quantum emitters and those coupled with different types of resonators.

SELECTION OF CITATIONS
SEARCH DETAIL