Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056548

ABSTRACT

Expanded agriculture production is required to support the world's population but can impose substantial environmental and climate change costs, particularly with intensifying animal production and protein demand. Shifting from an animal- to a plant-based protein diet has numerous health benefits. Soybean (Glycine max (L.) Merr.) is a major source of protein for human food and animal feed; improved soybean protein content and amino acid composition could provide high-quality soymeal for animal feed, healthier human foods, and a reduced carbon footprint. Nonetheless, during the soybean genome evolution, a balance was established between the amount of seed protein, oil, and carbohydrate content, burdening the development of soybean cultivars with high proteins. We isolated two high-seed protein (HP) soybean mutants, HP1 and HP2, with improved seed amino acid composition and stachyose content, pointing to their involvement in controlling seed rebalancing phenomenon. HP1 encodes ß-conglycinin (GmCG-1) and HP2 encodes Sucrose Binding Protein (GmSBP-1), which are both highly expressed in soybean seeds. Mutations in GmSBP-1, GmCG-1, and the paralog GmCG-2 resulted in increased protein levels, confirming their role as general regulators of seed protein content, amino acid seed composition, and seed vigor. Biodiversity analysis of GmCG and GmSBP across 108 soybean accessions revealed haplotypes correlated with protein and seed carbohydrate content. Furthermore, our data revealed an unprecedented role of GmCG and GmSBP proteins in improving seed vigor, crude protein, and amino acid digestibility. Since GmSBP and GmCG are present in most seed plants analyzed, these genes could be targeted to improve multiple seed traits.

2.
Plant J ; 119(4): 1685-1702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38935838

ABSTRACT

This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.


Subject(s)
Adaptation, Physiological , Poaceae , Stress, Physiological , Triticum , Triticum/genetics , Alleles , Poaceae/genetics , Hot Temperature , Droughts , Humans , Genome, Plant , Plant Proteins/genetics , Plant Breeding
3.
Nat Genet ; 56(6): 1225-1234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783120

ABSTRACT

Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored. Here, we present the Cicer super-pangenome based on the de novo genome assemblies of eight annual Cicer wild species. We identified 24,827 gene families, including 14,748 core, 2,958 softcore, 6,212 dispensable and 909 species-specific gene families. The dispensable genome was enriched for genes related to key agronomic traits. Structural variations between cultivated and wild genomes were used to construct a graph-based genome, revealing variations in genes affecting traits such as flowering time, vernalization and disease resistance. These variations will facilitate the transfer of valuable traits from wild Cicer species into elite chickpea varieties through marker-assisted selection or gene-editing. This study offers valuable insights into the genetic diversity and potential avenues for crop improvement in chickpea.


Subject(s)
Cicer , Crops, Agricultural , Genome, Plant , Quantitative Trait Loci , Cicer/genetics , Crops, Agricultural/genetics , Genetic Variation , Evolution, Molecular , Plant Breeding/methods , Phylogeny , Phenotype
5.
Trends Plant Sci ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658292

ABSTRACT

Panomics is an approach to integrate multiple 'omics' datasets, generated using different individuals or natural variations. Considering their diverse phenotypic spectrum, the phenome is inherently associated with panomics-based science, which is further combined with genomics, transcriptomics, metabolomics, and other omics techniques, either independently or collectively. Panomics has been accelerated through recent technological advancements in the field of genomics that enable the detection of population-wide structural variations (SVs) and hence offer unprecedented insights into the genetic variations contributing to important agronomic traits. The present review provides the recent trends of panomics-driven gene discovery toward various traits related to plant development, stress tolerance, accumulation of specialized metabolites, and domestication/dedomestication. In addition, the success stories are highlighted in the broader context of enhancing crop productivity.

7.
Sci Rep ; 14(1): 4567, 2024 02 25.
Article in English | MEDLINE | ID: mdl-38403625

ABSTRACT

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is determined by its sugar content, which comprises mainly sucrose and galacto-oligosaccharides (GOS) including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait loci (QTLs) and estimate genomic-prediction (GP) accuracies for possible application in breeding. Grain samples were collected from a multi-parent advanced generation intercross (MAGIC) population grown in California during 2016-2017. Grain sugars were assayed using high-performance liquid chromatography. Grain minerals were determined by inductively coupled plasma-optical emission spectrometry and combustion. Considerable variation was observed for sucrose (0.6-6.9%) and stachyose (2.3-8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were moderate (0.4-0.58). These findings help guide future breeding efforts to develop mineral-rich cowpea varieties with desirable sugar content.


Subject(s)
Quantitative Trait Loci , Vigna , Quantitative Trait Loci/genetics , Vigna/genetics , Sugars , Plant Breeding , Minerals , Edible Grain/genetics , Genomics , Sucrose
SELECTION OF CITATIONS
SEARCH DETAIL