Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38002396

ABSTRACT

This work presented the design and fabrication of a blood vessel and breast tumor detection device (BKA-06) based on optical energy spectroscopy. The BKA-06 device uses red-to-near-infrared light-emitting diodes that allow physicians or physicians to visualize blood vessels and surface structures such as breast tumors with the naked eye. The device consists of a built-in current control circuit to have the appropriate brightness (maximum illuminance of 98,592 lux) for the examination of superficial tumors deep under the skin, with a scan time of 3-5 min. The device BKA-06 can facilely observe each layer of blood vessels at the depth of the skin. For breast tumors, the location, size, and invasive areas around the tumor can also be visualized with the naked eye using the BKA-06 sensor. The results show that the BKA-06 sensor can provide clear breast tumor and vascular images, with a penetration of up to 15 cm in the skin and tissue layers of the breast. The breast tumor scanning tests with the BKA-06 sensor gave patients quick results and compared them through cell biopsy and MRI, respectively. The device has the advantages of being simple and easy to use, providing potential practical applications in the medical field and reducing costs for patients when taking MRI or CT scans. Therefore, the BKA-06 device is expected to help doctors and medical staff overcome difficulties in infusion, as well as identify breast tumors to support early breast cancer diagnosis and treatment.

3.
Front Immunol ; 14: 1239614, 2023.
Article in English | MEDLINE | ID: mdl-37600810

ABSTRACT

Multiple myeloma (MM) is a devastating plasma cell malignancy characterized by the expansion of aberrant monoclonal plasma cells in the bone marrow, leading to severe clinical manifestations and poor prognosis, particularly in relapsed/refractory cases. Identifying novel therapeutic targets is crucial to improve treatment outcomes in these patients. In this study, we investigated the role of the protein arginine methyltransferase 1 (PRMT1) in MM pathogenesis and explored its potential as a therapeutic target. We observed that PRMT1, responsible for most asymmetric di-methylation in cells, exhibited the highest expression among PRMT family members in MM cell lines and primary MM cells. Importantly, PRMT1 expression was significantly elevated in relapsed/refractory patients compared to newly diagnosed patients. High expression of PRMT1 expression was strongly associated with poor prognosis. We found that genetic or enzymatic inhibition of PRMT1 impaired MM cell growth, induced cell cycle arrest, and triggered cell death. Treatment with MS023, a potent PRMT type I inhibitor, demonstrated a robust inhibitory effect on the viability of primary cells isolated from newly diagnosed and proteasome inhibitor-relapsed/refractory patients in a dose-dependent manner. Suppression of PRMT1 downregulated genes related to cell division and upregulated genes associated with apoptosis pathway. We also found that genes related to immune response and lymphocyte activation were significantly upregulated in PRMT1-suppressed cells. Notably, the activation status of T cells was strikingly enhanced upon co-culturing with PRMT1-KO MM cells. In vivo studies using a xenograft model revealed that targeting PRMT1 by either CRISPR/Cas9-mediated knockout or MS023 treatment significantly attenuated MM tumor growth and prolonged the survival of tumor-bearing mice. Histological analysis further confirmed increased apoptotic cell death in MS023-treated tumors. Collectively, our findings establish PRMT1 as an indispensable and novel therapeutic vulnerability in MM. The elevated expression of PRMT1 in relapsed/refractory patients underscores its potential as a target for overcoming treatment resistance. Moreover, our results highlight the efficacy of MS023 as a promising therapeutic agent against MM, offering new avenues for therapeutic approaches in relapsed/refractory MM.


Subject(s)
Multiple Myeloma , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Protein-Arginine N-Methyltransferases/genetics , Plasma Cells , Antiviral Agents , Apoptosis , Repressor Proteins/genetics
4.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119384, 2023 01.
Article in English | MEDLINE | ID: mdl-36302465

ABSTRACT

Adverse effects of spaceflight on the human body are attritubuted to microgravity and space radiation. One of the most sensitive organs affected by them is the eye, particularly the retina. The conditions that astronauts suffer, such as visual acuity, is collectively called a spaceflight-associated neuro-ocular syndrome (SANS); however, the underlying molecular mechanism of the microgravity-induced ocular pathogenesis is not clearly understood. The current study explored how microgravity affects the retina function in ARPE19 cells in vitro under time-averaged simulated microgravity (µG) generated by clinostat. We found multicellular spheroid (MCS) formation and a significantly decreased cell migration potency under µG conditions compared to 1G in ARPE19 cells. We also observed that µG increases intracellular reactive oxygen species (ROS) and causes mitochondrial dysfunction in ARPE19 cells. Subsequently, we showed that µG activates autophagic pathways and ciliogenesis. Furthermore, we demonstrated that mitophagy activation is triggered via the mTOR-ULK1-BNIP3 signaling axis. Finally, we validated the effectiveness of TPP-Niacin in mitigating µG-induced oxidative stress and mitochondrial dysfunction in vitro, which provides the first experimental evidence for TPP-Niacin as a potential therapeutic agent to ameliorate the cellular phenotypes caused by µG in ARPE19 cells. Further investigations are, however, required to determine its physiological functions and biological efficacies in primary human retinal cells, in vivo models, and target identification.


Subject(s)
Niacin , Weightlessness , Humans , Niacin/metabolism , Niacin/pharmacology , Oxidative Stress , Epithelial Cells/metabolism , Retina/metabolism , Mitochondria/metabolism
5.
ACS Omega ; 8(51): 48994-49008, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162759

ABSTRACT

The Zika virus (ZIKV) is believed to cause birth defects, and no anti-ZIKV drugs have been approved by medical organizations to date. Starting from antimicrobial lead compounds with a pyrazolo[3,4-d]pyridazine-7-one scaffold, we synthesized 16 derivatives and screened their ability to interfere with ZIKV infection utilizing a cell-based phenotypic assay. Of these, five compounds showed significant inhibition of ZIKV with a selective index value greater than 4.6. In particular, compound 9b showed the best anti-ZIKV activity with a selectivity index of 22.4 (half-maximal effective concentration = 25.6 µM and 50% cytotoxic concentration = 572.4 µM). Through the brine shrimp lethality bioassay, 9b, 10b, 12, 17a, and 19a showed median lethal dose values in a range of 87.2-100.3 µg/mL. Compound 9b was also targeted to the NS2B-NS3 protease of ZIKV using molecular docking protocols, in which it acted as a noncompetitive inhibitor and strongly bound to five key amino acids (His51, Asp75, Ser135, Ala132, Tyr161). Utilizing the pharmacophore model of 9b, the top 20 hits were identified as prospective inhibitors of NS2B-NS3 protease, and six of them were confirmed for their stability with the protease via redocking and molecular dynamics simulations.

6.
RSC Adv ; 12(34): 22108-22118, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043105

ABSTRACT

Multiple myeloma is a deadly cancer that is a complex and multifactorial disease. In the present study, 12 belinostat derivatives (four resynthesized and eight new), HDAC inhibitors, were resynthesized via either Knoevenagel condensation, or Wittig reaction, or Heck reaction. Then an evaluation of the antiproliferative activities against myeloma cells MOPC-315 was carried out. Amongst them, compound 7f was the most bioactive compound with an IC50 of 0.090 ± 0.016 µM, being 3.5-fold more potent than the reference belinostat (IC50 = 0.318 ± 0.049 µM). Furthermore, we also confirmed the inhibitory activity of 7f in a cellular model. Additionally, we found that the inhibitory activity of 7f against histone deacetylase 6 catalytic activity (HDAC6) is more potent than that of belinostat. Finally, we observed the strong synergistic interaction between the derivative 7f and the proteasome bortezomib inhibitor (CI = 0.26), while belinostat and bortezomib showed synergism with a CI value of 0.36. Taken together, the above results suggest that 7f is a promising HDAC inhibitor deserving further investigation.

7.
Anal Chem ; 94(26): 9297-9305, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35696262

ABSTRACT

The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.


Subject(s)
Peptides , Spectrometry, Mass, Secondary Ion , Animals , Brain , Mice , Mice, Transgenic , RNA, Messenger , Spectrometry, Mass, Secondary Ion/methods
8.
NPJ Microgravity ; 7(1): 44, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34750383

ABSTRACT

Astronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.

9.
Biomacromolecules ; 22(10): 4138-4145, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34347453

ABSTRACT

In this study, we designed bisphosphonate-conjugated polyanionic hyaluronic acid (HA) microbeads (MBs) for the controlled delivery of bone morphogenetic protein 2 (BMP2). MBs were prepared via the photo-crosslinking of bisphosphonate (alendronate)-conjugated methacrylated HA (Alen-MHA). The polyanionic Alen-MHA MBs actively absorbed cationic BMP2 up to 91.0% of the loading efficacy and displayed a sustained release of BMP2 for 10 days. BMP2/Alen-MHA MBs induced osteogenic-related genes in cellular experiments and showed the highly increased bone formation efficacy in thigh muscle injection and rat spinal fusion animal models. Thus, BMP2/Alen-MHA MBs provide a promising opportunity to improve the delivery efficiency of BMP2.


Subject(s)
Bone Morphogenetic Protein 2 , Osteogenesis , Animals , Diphosphonates , Hyaluronic Acid , Microspheres , Rats
10.
Reprod Med Biol ; 20(3): 305-312, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34262398

ABSTRACT

PURPOSE: This study compared the therapeutic effects of transdermal testosterone gel (TTG) application at 4 and 6 weeks before controlled ovarian hyperstimulation (COH) in women with poor ovarian response (POR). METHODS: In this randomized control trial, infertile women with POR who underwent in vitro fertilization (IVF) were recruited and randomly classified into 4 week (n = 42) and 6 week (n = 38) TTG treatment groups and control group (n = 42). The primary outcome was total number of retrieved mature oocytes. The secondary outcomes were the biochemical pregnancy rate, clinical pregnancy rate, and ongoing pregnancy rate. RESULTS: No significant differences were observed in the number of oocytes retrieved, mature oocytes and embryos between all groups. Human chorionic gonadotropin (hCG) positive, clinical, and ongoing pregnancy rates were significantly higher in the TTG pretreatment groups than in the control group but no differences were observed between the 4- and 6 week groups. CONCLUSIONS: Applying TTG in infertile women with POR may ameliorate the outcomes of IVF. The extended application of TTG to 6 weeks did not improve the response to ovarian stimulation regarding the number of retrieved oocytes nor pregnancy outcomes compared to the 4 week pretreatment.

11.
PLoS Biol ; 18(11): e3000675, 2020 11.
Article in English | MEDLINE | ID: mdl-33216742

ABSTRACT

Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions.


Subject(s)
In Situ Hybridization/methods , Nucleic Acid Amplification Techniques/methods , Single-Cell Analysis/methods , Animals , Cell Line , Fluorescent Dyes , Humans , Mice , Nucleic Acid Hybridization/methods , Oligonucleotides , RNA/chemistry , RNA, Messenger/metabolism
12.
Plant Physiol Biochem ; 132: 557-565, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30326434

ABSTRACT

Although previous studies have demonstrated that the degree of demethylesterification of pectin polysaccharides is modulated during tomato fruit ripening, its involvement in vegetative organ development has been seldom investigated. As a first step in understanding the importance of pectin modification during vegetative stages, we used chemical, biochemical, and molecular approaches to analyze PMEs and PMEIs in tomato plants. We found that tomato cell walls isolated from vegetative tissues as well as the fruit contain substantial quantities of pectin, and different degrees of methylesterification were evident in different tissues. Our chemical study was further substantiated by immunolocalization analysis, which showed that selective removal of pectin-bound methyl groups is required for proper organ development and growth. In the tomato genome, there exists 79 PMEs and 48 PMEIs with temporally and spatially regulated expression. As a case study, we showed that two tomato PMEIs (SolycPMEI13 and SolycPMEI14) exhibited PMEI activities. This is the first report regarding the genome-wide identification and expression profiling of PME/PMEIs in tomato and the first chemical evidence of the differential degrees of pectin methylesterification in vegetative and reproductive tissues. Taken together, our findings provide an important tool to unravel the molecular and physiological functions of tomato PME and PMEI in further study.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Antibodies, Monoclonal/metabolism , Cell Wall/metabolism , Organ Specificity , Pectins/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism
13.
J Plant Physiol ; 208: 17-25, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27889517

ABSTRACT

Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Enzymologic , Oryza/enzymology , Pectins/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Gene Expression , Gene Expression Regulation, Plant , Organ Specificity , Oryza/cytology , Oryza/genetics , Phenotype , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Proteins , Sequence Alignment , Sequence Analysis, DNA
14.
Plant Physiol Biochem ; 101: 105-112, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26874295

ABSTRACT

Cell wall modifications such as partial degradation and depolymerization by cell wall hydrolases are normal cellular processes and are required for the functionalities of different cell types. Pectin, one of the major cell wall polysaccharides, is predominantly found in primary cell walls and middle lamellae and is subjected to in muro modification, primarily by cell wall-localized pectin methylesterases (PMEs). Molecular biochemical studies have demonstrated that enzymatic activities of PMEs are governed by multiple pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. Although a few studies in Arabidopsis have shown the importance of this PMEI-mediated regulation in the biophysical properties of cell walls, little is known about the molecular physiological functions of rice PMEIs. We found 49 members of the PMEI family in the rice genome. Analysis of their transcript levels by quantitative real-time PCR and meta expression analysis showed that they are regulated spatially and temporally, as well as in response to diverse stresses. Quantification of cell wall-bound methylesters indicated that the degree of pectin methylesterification is developmentally regulated; in particular, higher PMEI activities were detected in cell wall proteins prepared from young leaves. Furthermore, an activity assay demonstrated that two recombinant OsPMEI proteins (OsPMEI8 and 12) were able to inhibit the enzymatic activity of a commercial PME protein. Subcellular localization indicated that OsPMEI8 is targeted to the middle lamella and OsPMEI12 is localized in the plasma membrane and nucleus. Taken together, our findings provide the first molecular and biochemical evidence for functional characterization of PMEIs in rice growth and development.


Subject(s)
Cell Membrane , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Plant/physiology , Oryza , Plant Proteins , Cell Membrane/genetics , Cell Membrane/metabolism , Cloning, Molecular , Oryza/genetics , Oryza/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
15.
J Plant Physiol ; 183: 23-9, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26072144

ABSTRACT

Pectin, which is enriched in primary cell walls and middle lamellae, is an essential polysaccharide in all higher plants. Homogalacturonans (HGA), a major form of pectin, are synthesized and methylesterified by enzymes localized in the Golgi apparatus and transported into the cell wall. Depending on cell type, the degree and pattern of pectin methylesterification are strictly regulated by cell wall-localized pectin methylesterases (PMEs). Despite its importance in plant development and growth, little is known about the physiological functions of pectin in rice, which contains 43 different types of PME. The presence of pectin in rice cell walls has been substantiated by uronic acid quantification and immunodetection of JIM7 monoclonal antibodies. We performed PME activity assays with cell wall proteins isolated from different rice tissues. In accordance with data from Arabidopsis, the highest activity was observed in germinating tissues, young culm, and spikelets, where cells are actively elongating. Transcriptional profiling of OsPMEs by real-time PCR and meta-analysis indicates that PMEs exhibit spatial- and stress-specific expression patterns during rice development. Based on in silico analysis, we identified subcellular compartments, isoelectric point, and cleavage sites of OsPMEs. Our findings provide an important tool for further studies seeking to unravel the functional importance of pectin modification during plant growth and abiotic and biotic responses of grass plants.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Pectins/genetics , Plant Proteins/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Oryza/metabolism , Pectins/metabolism , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...