Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35466085

ABSTRACT

Summary: Increased intracranial pressure (ICP) can present with symptoms of headache, vomiting, visual changes, and tinnitus. Papilledema may be seen on physical exam. Thyroid disease has been a rare secondary cause of increased ICP. We present a 16-year-old female who had a worsening headache for 6 months. She was found to have signs, symptoms, physical exam findings, and diagnostic studies consistent with both increased ICP and previously undiagnosed Graves' disease. The patient was treated with a 19-month course of methimazole 40 mg daily. Her headache and papilledema resolved shortly after medication initiation. The timeline of symptoms and resolution of her increased ICP symptoms with treatment of Graves' disease suggests that hyperthyroidism was the underlying cause of her increased ICP. Clinicians should consider Graves' disease as the etiology in pediatric patients presenting with signs and symptoms of increased ICP with papilledema. Learning points: Symptoms of increased intracranial pressure (ICP) include headache, vomiting, transient visual changes, and tinnitus. Secondary causes of increased ICP should be considered in males, young children, older patients, and those not overweight. Clinicians should consider Graves' disease as the etiology in pediatric patients presenting with signs and symptoms of increased ICP with papilledema. They should assess for orbitopathy and thyromegaly and inquire about symptoms that would be indicative of hyperthyroidism.

2.
Article in English | MEDLINE | ID: mdl-35319493

ABSTRACT

Summary: Autonomous thyroid adenomas are caused by activating mutations in the genes encoding the thyroid-stimulating hormone receptor (TSHR) or mutations in the Gas subunit of the TSHR. Nodules with suspicious sonographic features should be submitted to fine-needle aspiration. Additional molecular testing may be performed to characterize the thyroid nodule's malignant potential further. We present a patient who underwent whole-transcriptome RNA-sequencing that indicated a TSHR I568T mutation after an ultrasound showed suspicious sonographic features and fine-needle aspiration was 'suspicious for malignancy'. The patient underwent thyroid resection and was found to have a locally invasive classical papillary thyroid carcinoma. Most reports of TSHR I568T mutation have been seen in patients with benign thyroid conditions. While there is insufficient data to suggest that the TSHR I568T mutation causes aggressive thyroid malignancy, we believe clinicians who identify the presence of this mutation on genome sequencing should be cautious about the possibility of locally invasive thyroid malignancy, especially when associated with Bethesda V cytopathology. Learning points: Germline and somatic activating mutations in the genes coding for the thyroid-stimulating hormone receptor (TSHR) have been frequently reported in familial and sporadic autonomous thyroid adenomas and non-autoimmune hyperthyroidism. Most reports of TSHR I568T mutation have been detected in patients with benign thyroid conditions. We present a patient who underwent whole-transcriptome RNA-sequencing that indicated a TSHR I568T mutation and subsequently underwent thyroid resection and was found to have a locally invasive classical papillary thyroid carcinoma. Clinicians who identify the presence of TSHR I568T mutation on genome sequencing should be cautious about the possibility of locally invasive thyroid malignancy, especially when associated with Bethesda V cytopathology.

3.
Front Endocrinol (Lausanne) ; 13: 1073592, 2022.
Article in English | MEDLINE | ID: mdl-36619548

ABSTRACT

Objectives: To evaluate the frequency and risk of malignancy of TSHRpI568T mutations discovered in indeterminate thyroid nodules (ITN) within the Veracyte CLIA laboratory undergoing Afirma® Genomic Sequencing Classifier (GSC) testing, and to evaluate a broader cohort of TSHR variants and their categorization as Afirma GSC benign (GSC-B) or suspicious (GSC-S). Finally, we seek to assess the risk of malignancy (ROM) of this group of TSHR mutated ITN in the GSC-S category. Methods: ITN submitted to Veracyte for Afirma GSC testing between October 2017 and February 2022 were analyzed for TSHR variants and rates of GSC-B and GSC-S were calculated based upon BIII or IV cytology, by TSHR variant codon amino acid (AA) substitution, age, and gender. For GSC-S samples, surgical pathology reports were requested, and the rate of malignancy was calculated. Results: Five percent of the ITN samples harbored an isolated TSHR variant and 5% of those were classified as GSC-S. Among TSHRpI568T samples, 96% were GSC-B and of the GSC-S samples, 21% were malignant. Among an unselected group of TSHR, absent TSHRpI568T mutations, 16.3% of GSC-S samples were malignant, all but one with codon mutations in the transmembrane subdomains of the TSHR. This prompted a dedicated evaluation of transmembrane codons which revealed a malignancy rate of 10.7% among GSC-S nodules. In total, 13/85 (15.3%) TSHR mutated ITN with Afirma GSC-S results were found to be malignant. Conclusions: TSHR variants are rare in ITN, and most are categorized as benign under Afirma GSC testing which carries a < 4% risk of malignancy. For GSC-S ITN with TSHR mutations, the risk of malignancy is ≥= 15%, which is clinically meaningful and may alter treatment or monitoring recommendations for patients.


Subject(s)
Receptors, Thyrotropin , Thyroid Nodule , Humans , Gene Expression Profiling/methods , Mutation , Receptors, Thyrotropin/genetics , Thyroid Nodule/surgery
4.
Front Chem ; 9: 729125, 2021.
Article in English | MEDLINE | ID: mdl-34485246

ABSTRACT

The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-b']bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA. TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was <150 nm. For comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant to afford NPs almost twice as large as those formed by TRPZ-bisMPA. Size and stability studies confirm the suitability of the TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the TRPZ-bisMPA NPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular uptake studies confirming the low cytotoxicity of TRPZ-bisMPA NPs and their potential in bioimaging.

5.
RSC Adv ; 11(45): 27832-27836, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480767

ABSTRACT

Shortwave infrared (SWIR) emission has great potential for deep-tissue in vivo biological imaging with high resolution. In this article, the synthesis and characterization of two new xanthene-based RosIndolizine dyes coded PhRosIndz and tolRosIndz is presented. The dyes are characterized via femtosecond transient absorption spectroscopy as well as steady-state absorption and emission spectroscopies. The emission of these dyes is shown in the SWIR region with peak emission at 1097 nm. TolRosIndz was encapsulated with an amphiphilic linear dendritic block co-polymer (LDBC) coded 10-PhPCL-G3 with high uptake yield. Further, cellular toxicity was examined in vitro using HEK (human embryonic kidney) cells where a >90% cell viability was observed at practical concentrations of the encapsulated dye which indicates low toxicity and reasonable biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...