Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Biomacromolecules ; 25(5): 2814-2822, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38598701

ABSTRACT

Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a ß-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.


Subject(s)
Biomedical Technology , Hydrogels , Peptides , Polyethylene Glycols , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hydrogels/standards , Hydrogels/toxicity , Peptides/chemistry , Polyethylene Glycols/chemistry , Biomedical Technology/methods , Humans , Cell Line , Fibroblasts/drug effects , Rheology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Cell Survival/drug effects , Escherichia coli/drug effects
2.
Bioact Mater ; 34: 422-435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38282968

ABSTRACT

Cell membrane-derived nanoparticles (NPs) have recently gained popularity due to their desirable features in drug delivery such as mimicking properties of native cells, impeding systemic clearance, and altering foreign body responses. Besides NP technology, adoptive immunotherapy has emerged due to its promise in cancer specificity and therapeutic efficacy. In this research, we developed a biomimetic drug carrier based on chimeric antigen receptor (CAR) transduced T-cell membranes. For that purpose, anti-HER2 CAR-T cells were engineered via lentiviral transduction of anti-HER2 CAR coding lentiviral plasmids. Anti-HER2 CAR-T cells were characterized by their specific activities against the HER2 antigen and used for cell membrane extraction. Anti-cancer drug Cisplatin-loaded poly (D, l-lactide-co-glycolic acid) (PLGA) NPs were coated with anti-human epidermal growth factor receptor 2 (HER2)-specific CAR engineered T-cell membranes. Anti-HER2 CAR-T-cell membrane-coated PLGA NPs (CAR-T-MNPs) were characterized and confirmed via fluorescent microscopy and flow cytometry. Membrane-coated NPs showed a sustained drug release over the course of 21 days in physiological conditions. Cisplatin-loaded CAR-T-MNPs also inhibited the growth of multiple HER2+ cancer cells in vitro. In addition, in vitro uptake studies revealed that CAR-T-MNPs showed an increased uptake by A549 cells. These results were also confirmed via in vivo biodistribution and therapeutic studies using a subcutaneous lung cancer model in nude mice. CAR-T-MNPs localized preferentially at tumor areas compared to those of other studied groups and consisted of a significant reduction in tumor growth in tumor-bearing mice. In Conclusion, the new CAR modified cell membrane-coated NP drug-delivery platform has demonstrated its efficacy both in vitro and in vivo. Therefore, CAR engineered membrane-coated NP system could be a promising cell-mimicking drug carrier that could improve therapeutic outcomes of lung cancer treatments.

3.
Nano Res ; 16(1): 1009-1020, 2023 Jan.
Article in English | MEDLINE | ID: mdl-38098888

ABSTRACT

Near-infrared fluorescence imaging has emerged as a noninvasive, inexpensive, and ionizing-radiation-free monitoring tool for assessing tumor growth and treatment efficacy. In particular, ultrasound switchable fluorescence (USF) imaging has been explored with improved imaging sensitivity and spatial resolution in centimeter-deep tissues. This study achieved size control of polymer-based and indocyanine green (ICG) encapsulated USF contrast agents, capable of accumulating at the tumor after intravenous injections. These nanoprobes varied in size from 58 nm to 321 nm. The bioimaging profiles demonstrated that the proposed nanoparticles can efficiently eliminate the background light from normal tissue and show a tumor-specific fluorescence enhancement in the BxPC-3 tumor-bearing mice models possibly via the enhanced permeability and retention effect. In vivo tumor USF imaging further proved that these nanoprobes can effectively be switched 'ON' with enhanced fluorescence in response to a focused ultrasound stimulation in the tumor microenvironment, contributing to the high-resolution USF images. Therefore, our findings suggest that ICG-encapsulated nanoparticles are good candidates for USF imaging of tumors in living animals, indicating their great potential in optical tumor imaging in deep tissue.

4.
Biomed Opt Express ; 14(9): 4406-4420, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37791288

ABSTRACT

Measuring the local background temperature in diseased and inflamed tissues is highly desirable, especially in a non-invasive way. In this work, ultrasound-switchable fluorescence (USF) technique was utilized to estimate the local background temperature for the first time by analyzing the temperature dependence of fluorescence emission from USF contrast agents induced by a focused ultrasound (FU) beam. First, temperature-sensitive USF agents with distinct temperature switching-on thresholds were synthesized, and their thermal switching characteristics were quantified using an independent spectrometer system. Second, the USF contrast agent suspension was injected into a microtube that was embedded into a phantom and the dynamic USF signal was acquired using a camera-based USF system. The differential profile of the measured dynamic USF signal was computed and compared with the thermal switching characteristics. This allowed for the calculation of the local background temperature of the sample in the FU focal volume based on the estimation of heating speed. An infrared (IR) camera was used to acquire the surface temperature of the sample and further compare it with the USF system. The results showed that the difference between the temperatures acquired from the USF thermometry and the IR thermography was 0.64 ± 0.43 °C when operating at the physiological temperature range from 35.27 to 39.31 °C. These results indicated the potential use of the USF system for measuring the local temperature in diseased tissues non-invasively. The designed USF-based thermometry shows a broad application prospect in high spatial resolution temperature imaging with a tunable measurement range in deep tissue.

5.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686076

ABSTRACT

Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.


Subject(s)
Anti-Infective Agents , Nanocomposites , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Infrared Rays
6.
Article in English | MEDLINE | ID: mdl-35950266

ABSTRACT

Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Cardiovascular Diseases , Immunomodulation , Nanomedicine , Nanoparticles , Nervous System Diseases , Aged , Humans , Drug Delivery Systems , Nanoparticles/therapeutic use , Quality of Life , Cardiovascular Diseases/drug therapy , Nervous System Diseases/drug therapy
7.
Bioact Mater ; 19: 348-359, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35892002

ABSTRACT

Cardiac extracellular matrices (ECM) play crucial functional roles in cardiac biomechanics. Previous studies have mainly focused on collagen, the major structural ECM in heart wall. The role of elastin in cardiac mechanics, however, is poorly understood. In this study, we investigated the spatial distribution and microstructural morphologies of cardiac elastin in porcine left ventricles. We demonstrated that the epicardial elastin network had location- and depth-dependency, and the overall epicardial elastin fiber mapping showed certain correlation with the helical heart muscle fiber architecture. When compared to the epicardial layer, the endocardial layer was thicker and has a higher elastin-collagen ratio and a denser elastin fiber network; moreover, the endocardial elastin fibers were finer and more wavy than the epicardial elastin fibers, all suggesting various interface mechanics. The myocardial interstitial elastin fibers co-exist with the perimysial collagen to bind the cardiomyocyte bundles; some of the interstitial elastin fibers showed a locally aligned, hinge-like structure to connect the adjacent cardiomyocyte bundles. This collagen-elastin combination reflects an optimal design in which the collagen provides mechanical strength and elastin fibers facilitate recoiling during systole. Moreover, cardiac elastin fibers, along with collagen network, closely associated with the Purkinje cells, indicating that this ECM association could be essential in organizing cardiac Purkinje cells into "fibrous" and "branching" morphologies and serving as a protective feature when Purkinje fibers experience large deformations in vivo. In short, our observations provide a structural basis for future in-depth biomechanical investigations and biomimicking of this long-overlooked cardiac ECM component.

8.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38202502

ABSTRACT

To develop a potential cancer treatment, we formulated a novel drug delivery platform made of poly(lactic-co-glycolic) acid (PLGA) and used a combination of an emerging siRNA technology and an extracted natural substance called catechins. The synthesized materials were characterized to determine their properties, including morphology, hydrodynamic size, charge, particle stability, and drug release profile. The therapeutic effect of AFP-siRNA and epigallocatechin gallate (EGCG) was revealed to have remarkable cytotoxicity towards HepG2 when in soluble formulation. Notably, the killing effect was enhanced by the co-treatment of AFP-siRNA-loaded PLGA and EGCG. Cell viability significantly dropped to 59.73 ± 6.95% after treatment with 12.50 µg/mL of EGCG and AFP-siRNA-PLGA. Meanwhile, 80% of viable cells were observed after treatment with monotherapy. The reduction in the survival of cells is a clear indication of the complementary action of both active EGCG and AFP-siRNA-loaded PLGA. The corresponding cell death was involved in apoptosis, as evidenced by the increased caspase-3/7 activity. The combined treatment exhibited a 2.5-fold increase in caspase-3/7 activity. Moreover, the nanoparticles were internalized by HepG2 in a time-dependent manner, indicating the appropriate use of PLGA as a carrier. Accordingly, a combined system is an effective therapeutic strategy.

9.
ACS Appl Mater Interfaces ; 14(51): 56498-56509, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36475601

ABSTRACT

Effective drug delivery to pulmonary sites will benefit from the design and synthesis of novel drug delivery systems that can overcome various tissue and cellular barriers. Cell penetrating peptides (CPPs) have shown promise for intracellular delivery of various imaging probes and therapeutics. Although CPPs improve delivery efficacy to a certain extent, they still lack the scope of engineering to improve the payload capacity and protect the payload from the physiological environment in drug delivery applications. Inspired by recent advances of CPPs and CPP-functionalized nanoparticles, in this work, we demonstrate a novel nanocomposite consisting of fiber-forming supramolecular CPPs that are coated onto polylactic-glycolic acid (PLGA) nanoparticles to enhance pulmonary drug delivery. These nanocomposites show a threefold higher intracellular delivery of nanoparticles in various cells including primary lung epithelial cells, macrophages, and a 10-fold increase in endothelial cells compared to naked PLGA nanoparticles or a twofold increase compared to nanoparticles modified with traditional monomeric CPPs. Cell uptake studies suggest that nanocomposites likely enter cells through mixed macropinocytosis and passive energy-independent mechanisms, which is followed by endosomal escape within 24 h. Nanocomposites also showed potent mucus permeation. More importantly, freeze-drying and nebulizing formulated nanocomposite powder did not affect their physiochemical and biological activity, which further highlights the translative potential for use as a stable drug carrier for pulmonary drug delivery. We expect nanocomposites based on peptide nanofibers, and PLGA nanoparticles can be custom designed to encapsulate and deliver a wide range of therapeutics including nucleic acids, proteins, and small-molecule drugs when employed in inhalable systems to treat various pulmonary diseases.


Subject(s)
Cell-Penetrating Peptides , Nanocomposites , Nanofibers , Nanoparticles , Glycols , Endothelial Cells , Cell-Penetrating Peptides/chemistry , Nanoparticles/chemistry , Drug Delivery Systems/methods , Lung , Nanocomposites/chemistry , Drug Carriers
10.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500236

ABSTRACT

Percutaneous coronary intervention (PCI) is a common procedure for the management of coronary artery obstruction. However, it usually causes vascular wall injury leading to restenosis that limits the long-term success of the PCI endeavor. The ultimate objective of this study was to develop the targeting nanoparticles (NPs) that were destined for the injured subendothelium and attract endothelial progenitor cells (EPCs) to the damaged location for endothelium regeneration. Biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs were conjugated with double targeting moieties, which are glycoprotein Ib alpha chain (GPIbα) and human single-chain antibody variable fragment (HuscFv) specific to the cluster of differentiation 34 (CD34). GPIb is a platelet receptor that interacts with the von Willebrand factor (vWF), highly deposited on the damaged subendothelial surface, while CD34 is a surface marker of EPCs. A candidate anti-CD34 HuscFv was successfully constructed using a phage display biopanning technique. The HuscFv could be purified and showed binding affinity to the CD34-positive cells. The GPIb-conjugated NPs (GPIb-NPs) could target vWF and prevent platelet adherence to vWF in vitro. Furthermore, the HuscFv-conjugated NPs (HuscFv-NPs) could capture CD34-positive cells. The bispecific NPs have high potential to locate at the damaged subendothelial surface and capture EPCs for accelerating the vessel repair.


Subject(s)
Nanoparticles , Percutaneous Coronary Intervention , Humans , Endothelium, Vascular/metabolism , von Willebrand Factor/metabolism , Blood Platelets/metabolism , Antibodies/metabolism
11.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36293521

ABSTRACT

Angiogenesis inhibitor drugs have been explored as important pharmacological agents for cancer therapy, including hepatocellular carcinoma. These agents have several drawbacks, such as drug resistance, nonspecific toxicity, and systemic side effects. Therefore, combination therapy of the drug and small interfering RNA could be a promising option to achieve high therapeutic efficacy while allowing a lower systemic dose. Therefore, we studied adding an alpha-fetoprotein siRNA (AFP-siRNA) incorporated on polymeric nanoparticles (NPs) along with angiogenesis inhibitor drugs. The AFP siRNA-loaded NPs were successfully synthesized at an average size of 242.00 ± 2.54 nm. Combination treatment of AFP-siRNA NPs and a low dose of sunitinib produced a synergistic effect in decreasing cell viability in an in vitro hepatocellular carcinoma (HCC) model. AFP-siRNA NPs together with sorafenib or sunitinib greatly inhibited cell proliferation, showing only 39.29 ± 2.72 and 44.04 ± 3.05% cell viability, respectively. Moreover, quantitative reverse transcription PCR (qRT-PCR) demonstrated that AFP-siRNA incorporated with NPs could significantly silence AFP-mRNA expression compared to unloaded NPs. Interestingly, the expression level of AFP-mRNA was further decreased to 28.53 ± 5.10% when sunitinib was added. Therefore, this finding was considered a new promising candidate for HCC treatment in reducing cell proliferation and enhancing therapeutic outcomes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Small Interfering/therapeutic use , alpha-Fetoproteins/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Sunitinib/therapeutic use , Cell Line, Tumor , Polymers/therapeutic use , RNA, Messenger
12.
Chem Asian J ; 17(19): e202200724, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35986893

ABSTRACT

Self-assembled peptides are an emerging family of biomaterials that show great promise for a range of biomedical and biotechnological applications. Introducing and tuning the pH-responsiveness of the assembly is highly desirable for improving their biological activities. Inspired by proteins with internal ionizable residues, we report a simple but effective approach to constructing pH-responsive peptide assembly containing unnatural ionic amino acids with an aliphatic tertiary amine side chain. Through a combined experimental and computational investigation, we demonstrate that these residues can be accommodated and stabilized within the internal hydrophobic compartment of the peptide assembly. The hydrophobic microenvironment shifts their pKa significantly from a basic pH typically found for free amines to a more biologically relevant pH in the weakly acidic range. The pH-induced ionization and ionization-dependent self-assembly and disassembly are thoroughly investigated and correlated with the biological activity of the assembly. This new approach has unique advantages in tuning the pH-responsiveness of self-assembled peptides across a large pH range in a complex biological environment. We anticipate the ionizable amino acids developed here can be widely applicable to the synthesis and self-assembly of many amphiphilic peptides with endowed pH-responsive properties to enhance their biological activities toward applications ranging from targeted therapeutic delivery to proton transport.


Subject(s)
Amino Acids , Protons , Amines , Biocompatible Materials/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry
13.
Bioengineering (Basel) ; 9(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36004926

ABSTRACT

Researchers have shown that adult zebrafish have the potential to regenerate 20% of the ventricular muscle within two months of apex resection, and neonatal mice have the capacity to regenerate their heart after apex resection up until day 7 after birth. The goal of this study was to determine if large mammals (porcine heart model) have the capability to fully regenerate a resected portion of the left ventricular apex during the neonatal stage, and if so, how long the regenerative potential persists. A total of 36 piglets were divided into the following groups: 0-day control and surgical groups and seven-day control and surgical groups. For the apex removal groups, each piglet was subjected to a partial wall thickness resection (~30% of the ventricular wall thickness). Heart muscle function was assessed via transthoracic echocardiograms; the seven-day surgery group experienced a decrease in ejection fraction and fractional shortening. Upon gross necropsy, for piglets euthanized four weeks post-surgery, all 0-day-old hearts showed no signs of scarring or any indication of the induced injury. Histological analysis confirmed that piglets in the 0-day surgery group exhibited various degrees of regeneration, with half of the piglets showing full regeneration and the other half showing partial regeneration. However, each piglet in the seven-day surgery group demonstrated epicardial fibrosis along with moderate to severe dissecting interstitial fibrosis, which was accompanied by an abundant collagenous extracellular matrix as the result of a scar formation in the resection site. Histology of one 0-day apex resection piglet (briefly lain on and accidentally killed by the mother sow three days post-surgery) revealed dense, proliferative mesenchymal cells bordering the fibrin and hemorrhage zone and differentiating toward immature cardiomyocytes. We further examined the heart explants at 5-days post-surgery (5D PO) and 1-week post-surgery (1W PO) to assess the repair progression. For the 0-day surgery piglets euthanized at 5D PO and 1W PO, half had abundant proliferating mesenchymal cells, suggesting active regeneration, while the other half showed increased extracellular collagen. The seven-day surgery piglets euthanized at 5D PO, and 1W PO showed evidence of greatly increased extracellular collagen, while some piglets had proliferating mesenchymal cells, suggesting a regenerative effort is ongoing while scar formation seems to predominate. In short, our qualitative findings suggest that the piglets lose the full myocardial regenerative potential by 7 days after birth, but greatly preserve the regenerative potential within 1 day post-partum.

14.
Pharm Res ; 39(11): 2729-2743, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35764754

ABSTRACT

PURPOSE: The development of two novel pH-only and pH- and thermo-responsive theranostic nanoparticle (NP) formulations to deliver an anticancer drug and track the accumulation and therapeutic efficacy of the formulations through inherent fluorescence. METHODS: A pH-responsive formulation was synthesized from biodegradable photoluminescent polymer (BPLP) and sodium bicarbonate (SBC) via an emulsion technique, while a thermoresponsive BPLP copolymer (TFP) and SBC were used to synthesize a dual-stimuli responsive formulation via free radical co-polymerization. Cisplatin was employed as a model drug and encapsulated during synthesis. Size, surface charge, morphology, pH-dependent fluorescence, lower critical solution temperature (LCST; TFP NPs only), cytocompatibility and in vitro uptake, drug release kinetics and anticancer efficacy were assessed. RESULTS: While all BPLP-SBC and TFP-SBC combinations produced spherical nanoparticles of a size between 200-300 nm, optimal polymer-SBC ratios were selected for further study. Of these, the optimal BPLP-SBC formulation was found to be cytocompatible against primary Type-1 alveolar epithelial cells (AT1) up to 100 µg/mL, and demonstrated sustained drug release over 14 days, dose-dependent uptake, and marked pH-dependent A549 cancer cell killing (72 vs. 24% cell viability, at pH 7.4 vs. 6.0). The optimal TFP-SBC formulation showed excellent cytocompatibility against AT1 cells up to 500 µg/mL, sustained release characteristics, dose-dependent uptake, pH-dependent (78% at pH 7.4 vs. 64% at pH 6.0 at 37°C) and marked temperature-dependent A549 cancer cell killing (64% at 37°C vs. 37% viability at pH 6.0, 41°C). CONCLUSIONS: In all, both formulations hold promise as inherently fluorescent, stimuli-responsive theranostic platforms for passively targeted anti-cancer therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems/methods , Neoplasms/drug therapy , Drug Liberation , Polymers/therapeutic use , Hydrogen-Ion Concentration , Drug Carriers
15.
Biomater Adv ; 134: 112589, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525749

ABSTRACT

Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.


Subject(s)
Nanocomposites , Nanoparticles , Tissue Adhesives , Adhesives/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Indoles , Nanocomposites/therapeutic use , Polymers , Tissue Adhesives/pharmacology
16.
Front Physiol ; 13: 819767, 2022.
Article in English | MEDLINE | ID: mdl-35283767

ABSTRACT

In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.

18.
J Mater Chem B ; 9(46): 9533-9546, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34757371

ABSTRACT

Local skin cancer recurrence occurs in ∼12% of the patients post-surgery due to persistent growth of residual cancer cells. Wound infection is another significant complication following surgery. We report a novel in situ-forming nanocomposite hydrogel (NCH) containing PLGA-carboxymethyl chitosan nanoparticles (186 nm) for localized pH-responsive skin cancer therapy and wound healing. This injectable hydrogel, comprising of a citric acid-derived polymer backbone, gelled within 5 minutes, and demonstrated excellent swelling (283% of dry weight) and compressive strengths (∼5.34 MPa). Nanoparticle incorporation did not significantly affect hydrogel properties. The NCH effluents were cytocompatible with human dermal fibroblasts at 500 µg ml-1 concentration and demonstrated pH-dependent drug release and promising therapeutic efficacy against A431 and G361 skin cancer cells in vitro. Significant zones of inhibition were observed in S. aureus and E. coli cultures on NCH treatment, confirming its antibacterial properties. Our studies show that the pH-responsive NCH can be potentially used for adjuvant skin cancer treatment and wound healing.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Nanocomposites/chemistry , Polyethylene Glycols/chemistry , Skin Neoplasms/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials , Cell Line, Tumor , Cell Survival/drug effects , Drug Delivery Systems , Fluorouracil/chemistry , Fluorouracil/pharmacology , Humans , Hydrogen-Ion Concentration , Wound Healing
19.
Front Cardiovasc Med ; 8: 707897, 2021.
Article in English | MEDLINE | ID: mdl-34651022

ABSTRACT

Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.

20.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917924

ABSTRACT

Oxidative stress induced death and dysregulation of trabecular meshwork (TM) cells contribute to the increased intraocular pressure (IOP) in primary open angle (POAG) glaucoma patients. POAG is one of the major causes of irreversible vision loss worldwide. Nitric oxide (NO), a small gas molecule, has demonstrated IOP lowering activity in glaucoma by increasing aqueous humor outflow and relaxing TM. Glaucomatous pathology is associated with decreased antioxidant enzyme levels in ocular tissues causing increased reactive oxygen species (ROS) production that reduce the bioavailability of NO. Here, we designed, synthesized, and conducted in vitro studies of novel second-generation sulfur containing hybrid NO donor-antioxidants SA-9 and its active metabolite SA-10 to scavenge broad-spectrum ROS as well as provide efficient protection from t-butyl hydrogen peroxide (TBHP) induced oxidative stress while maintaining NO bioavailability in TM cells. To allow a better drug delivery, a slow release nanosuspension SA-9 nanoparticles (SA-9 NPs) was prepared, characterized, and tested in dexamethasone induced ocular hypertensive (OHT) mice model for IOP lowering activity. A single topical eye drop of SA-9 NPs significantly lowered IOP (61%) at 3 h post-dose, with the effect lasting up to 72 h. This class of molecule has high potential to be useful for treatment of glaucoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...