Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 34675-34688, 2024 May.
Article in English | MEDLINE | ID: mdl-38714614

ABSTRACT

The ambient air quality during COVID-19 lockdowns has been improved in many cities in the world. This study is to assess the changes in persistent organic pollutants in PM2.5 during the COVID-19 lockdown in Hanoi. Individual organic species in PM2.5 ((e.g., polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), and organochlorine pesticides (OCPs)) were measured in an urban residential area in Hanoi from before the March 10th to April 22nd, 2020, including before the partial lockdown (BL) and the partial lockdown (PL) phases. During the PL phase, the concentration of Σ14PAHs and Σ28PCBs was reduced by 38 and 52% compared with the BL period, respectively. The diagnostic ratio method implied that the sources of PAHs within the PL phase had a less effect on traffic and industrial activities than in the BL phase. The characteristic ratio method indicated that PCBs were mixed by commercial product and combustion process in both the BL and the PL periods, however, the source of PCBs in the BL phase was influenced by municipal waste incineration more than those in the PL phase. The decreasing concentration of Σ20OCPs during the partial lockdown was attributed to the restriction of human activities during the quarantine period. The results suggested that the source of OCPs was probably derived from the usage of pesticides in current and, historical degradation or the transportation of pesticides from the soil to the atmosphere.


Subject(s)
Air Pollutants , COVID-19 , Environmental Monitoring , Particulate Matter , Vietnam , COVID-19/epidemiology , Particulate Matter/analysis , Air Pollutants/analysis , Humans , Air Pollution , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , SARS-CoV-2 , Hydrocarbons, Chlorinated/analysis , Cities , Persistent Organic Pollutants , Pesticides/analysis
2.
Environ Sci Pollut Res Int ; 30(47): 104181-104193, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37698798

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a group of concerned persistent toxic substances, especially for their application or unintentional formation in food contact materials (FCMs). However, information about the occurrence, sources, and fate of these pollutants in food packaging materials from Vietnam as well as Southeast Asian countries is probably still obscured. In this study, levels of 13 perfluoroalkyl carboxylic acids (PFCAs) and 4 sulfonates (PFSs) were determined in various types of food packaging samples collected from Vietnamese markets. Generally low concentrations of total 17 PFASs (median 0.341; max 624 ng/g) suggested that these compounds were mainly inadvertently produced rather than intentionally added to the packaging materials. A few mochi paper tray samples had relatively high PFAS levels (372-624 ng/g), which were dominated by long-chain (C8-C12) PFCAs. A comprehensive and updated overview of PFASs in FCMs from different countries in the world was also provided. Current database could not provide conclusive trends of PFAS concentrations and profiles in FCMs between continents and countries. The highest levels up to ppm were reported for PFCAs (e.g., PFBA, PFHxA, PFOA, and PFDA) and several fluorotelomer alcohols and carboxylic acids, while PFSs were almost absent in FCMs. FPASs can emit from FCMs, migrate to food, and then contribute to dietary exposure in humans and animals. Additional investigations on the occurrence, sources, behavior and fate, and impacts of PFASs in FCMs are critically needed, especially in emerging and developing countries.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Vietnam , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanesulfonates , Carboxylic Acids , Environmental Monitoring , Alkanesulfonic Acids/analysis
3.
Environ Sci Pollut Res Int ; 29(28): 42074-42089, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35129745

ABSTRACT

Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by sulfonating with H2SO4 was used for heavy metal removal from electroplating wastewater. Batch mode experiments of Cu2+, Zn2+, and Cd2+ were carried out to determine effect of pH, initial concentration, equilibrium time, and the isotherm and kinetic parameters; the stability of the resin in continuous operation was then evaluated. Finally, the longevity of the resin after being exhausted was explored. The results indicated that at pH 6, a pseudo-second-order kinetic model was applicable to describe adsorption of studied heavy metals by sulfonated polystyrene with adsorption capacities of 7.48 mg Cu2+/g, 7.23 mg Zn2+/g, and 6.50 mg Cd2+/g, respectively. Moreover, the ion exchange process between sulfonated polystyrene resin and Cu2+, Zn2+, Cd2+ ions followed the Langmuir isotherm adsorption model with R2 higher than 96%. The continuous fixed-bed column in conditions of a sulfonated polystyrene mass of 500 g, and a flow rate of 2.2 L/h was investigated for an influent solution with known initial concentration of 20 mg/L. Thomas and Yoon-Nelson models were tested with regression analysis. When being exhausted, the sulfonated polystyrene was regenerated by NaCl in 10 min with ratio 5 mL of NaCl 2 M per 1 g saturated resins. After 4 times regeneration, the heavy metal removal efficiency of sulfonated polystyrene was reduced to 50%. These aforementioned results can figure out that by sulfonating polystyrene waste to synthesize ion exchanging materials, this method is technically efficient and environmentally friendly to achieve sustainability.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/analysis , Plastics , Polystyrenes/analysis , Sodium Chloride , Wastewater/analysis , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 29(28): 41875-41885, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33834338

ABSTRACT

Covid-19 lockdowns have improved the ambient air quality across the world via reduced air pollutant levels. This article aims to investigate the effect of the partial lockdown on the main ambient air pollutants and their elemental concentrations bound to PM2.5 in Hanoi. In addition to the PM2.5 samples collected at three urban sites in Hanoi, the daily PM2.5, NO2, O3, and SO2 levels were collected from the automatic ambient air quality monitoring station at Nguyen Van Cu street to analyze the pollution level before (March 10th-March 31st) and during the partial lockdown (April 1st-April 22nd) with "current" data obtained in 2020 and "historical" data obtained in 2014, 2016, and 2017. The results showed that NO2, PM2.5, O3, and SO2 concentrations obtained from the automatic ambient air quality monitoring station were reduced by 75.8, 55.9, 21.4, and 60.7%, respectively, compared with historical data. Besides, the concentration of PM2.5 at sampling sites declined by 41.8% during the partial lockdown. Furthermore, there was a drastic negative relationship between the boundary layer height (BLH) and the daily mean PM2.5 in Hanoi. The concentrations of Cd, Se, As, Sr, Ba, Cu, Mn, Pb, K, Zn, Ca, Al, and Mg during the partial lockdown were lower than those before the partial lockdown. The results of enrichment factor (EF) values and principal component analysis (PCA) concluded that trace elements in PM2.5 before the partial lockdown were more affected by industrial activities than those during the partial lockdown.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Trace Elements , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2 , Trace Elements/analysis , Vietnam
5.
Heliyon ; 7(5): e07092, 2021 May.
Article in English | MEDLINE | ID: mdl-34136684

ABSTRACT

Electroplating sludge consists of various heavy metal oxides, which may be utilized as adsorbent to remove Cu (II) present in aqueous environment. This study evaluated the adsorption performance of calcinated electroplating sludge. The adsorption isotherm based on Langmuir equation proved that calcinated electroplating sludge had a higher adsorption performance than raw electroplating sludge, with maximum adsorption capacity 92 mg/g and 76.34 mg/g, respectively. Findings of the conducted kinetic study revealed that both surface adsorption and intra-particular diffusion were involved during the adsorption process. Moreover, the comparison between the experimental and calculated data of equilibrium adsorption capacity demonstrated that the pseudo second-order kinetic equation fitted well with 38.31 mg/g of calcinated sludge and 33.66 mg/g of raw sludge, approximate to real-world data. Furthermore, adsorption mechanism research demonstrated that while OH group plays a vital role in raw sample, Ca2+, in addition to OH group, was involved in ion exchange in calcinated sample.

6.
J Anal Methods Chem ; 2021: 6641796, 2021.
Article in English | MEDLINE | ID: mdl-33489419

ABSTRACT

In this research, the kinetics of COD biodegradation and biogas production in a moving bed biofilm reactor (MBBR) at pilot scale (10 m3) for piggery wastewater treatment were investigated. Polyethylene (PE) was used as a carrying material, with organic loading rates (OLRs) of 10, 15, and 18 kgCOD/m3 day in accordance to hydraulic retention times (HRTs) of 0.56, 0.37, and 0.3 day. The results showed that a high COD removal efficiency was obtained in the range of 68-78% with the influent COD of 5.2-5.8 g/L at all 3 HRTs. About COD degradation kinetics, in comparison to the first- and second-order kinetics and the Monod model, Stover-Kincannon model showed the best fit with R 2 0.98 and a saturation value constant (K B ) and a maximum utilization rate (U max) of 52.40 g/L day and 82.65 g/L day, respectively. The first- and second-order kinetics with all 3 HRTs and Monod model with the HRT of 0.56 day also obtained high R 2 values. Therefore, these kinetics and models can be further considered to be used for predicting the kinetic characteristics of the MBBR system in piggery wastewater treatment process. The result of a 6-month operation of the MBBR was that biogas production was mostly in the operating period of days 17 to 80, around 0.2 to 0.3 and 0.15-0.20 L/gCODconverted, respectively, and then reduction at an OLR of 18 kgCOD/m3. After the start-up stage, day 35 biogas cumulative volume fluctuated from 20 to 30 m3/day and reached approximately 3500 m3 for 178 days during the whole digestive process. Methane is accounted for about 65-70% of biogas with concentration around 400 mg/L.

7.
Environ Sci Pollut Res Int ; 28(10): 11869-11881, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31953762

ABSTRACT

In this study, different pretreatment strategies of sugarcane bagasse prior to citric acid modification were investigated in terms of Pb2+ adsorption capacity. Pretreatment strategies included the use of NaOH, HCl, and C2H5OH in various concentrations. In order to fundamentally understand how these pretreatment methods affect the modification of sugarcane bagasse by citric acid as well as the Pb2+ adsorption capacity of sugarcane bagasse, three main components of sugarcane bagasse namely cellulose, hemicellulose, and lignin were isolated and esterified by citric acid under the same conditions. ATR-FTIR, XPS, SEM, and an analysis of the number of carboxylic acid groups were used to investigate the physicochemical and chemical properties of the materials. These three components were proved to participate in adsorption and induce the esterification with citric acid. Hence, pretreatment with ethanol and 0.01 M NaOH which could retain cellulose, hemicellulose, and lignin in sugarcane bagasse achieved a high Pb2+ adsorption capacity, i.e., 122.4 and 97 mg/g after the esterification with citric acid. In contrast, pretreatment with 0.5 M NaOH and 0.1 M HCl removed lignin and hemicellulose, leading to the lowest value of approximately 45 mg/g for citric acid esterified-pretreated sugarcane bagasse. XPS analysis and number of carboxylic group measurement confirmed the esterification between bagasse and citric acid. To understand the adsorption mechanism of adsorbent, two kinetic models including pseudo-first-order model and pseudo-second-order model were applied. The experimental data were well described by the pseudo-second-order model. The adsorption isotherm data were fitted Langmuir and Freundlich.


Subject(s)
Saccharum , Water Pollutants, Chemical , Adsorption , Cellulose , Citric Acid , Esterification , Lead
8.
Sci Total Environ ; 706: 135947, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31846881

ABSTRACT

A novel adsorbent was prepared in granular form from iron (III) hydroxide and other additives to remove arsenate (As (V)) from aqueous solution. Adsorption of As (V) onto the adsorbent in batch experiments was analyzed to understand the adsorption mechanism, affecting factors, and adsorption isotherms. The optimal working conditions for the developed adsorbent were at pH 3, 30 °C and 50 g/L. The adsorption of arsenate onto the adsorbent occurred rapidly in the first 10 min and reached equilibrium in 2 h. The Langmuir isotherm was found to be best fitted the adsorption. The pre- and post-adsorption adsorbents were characterized by SEM, BET, FTIR, XRD, and Zeta potential techniques. Experimental results clearly demonstrated the potential impact of elemental composition, crystallinity, surface morphology, and other physico-chemical properties of the adsorbent on the adsorption performance variety. The experimental results with the pilot scale treatment system revealed that the adsorbent can be applied successfully and lead to a very efficient drinking water treatment system, at a competitive cost compared to the water market in Hanoi, Vietnam.

9.
Sci Total Environ ; 416: 164-71, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22227302

ABSTRACT

This study estimates the dietary exposure to cadmium (Cd), and associated potential health risks, for individuals living and working in a metal recycling community (n=132) in Vietnam in comparison to an agricultural (reference) community (n=130). Individual-level exposure to Cd was estimated through analysis of staple foodstuffs combined with information from a food frequency questionnaire. Individual-level exposure estimates were compared with published 'safe' doses to derive a Hazard Quotient (HQ) for each member of the study population. Looking at the populations as a whole, there were no significant differences in the diets of the two villages. However, significantly more rice was consumed by working age adults (18-60 years) in the recycling village compared to the reference village (p<0.001). Rice was the main staple food with individuals consuming 461±162g/d, followed by water spinach (103±51kg/d). Concentrations of Cd in the studied foodstuffs were elevated in the metal recycling village. Values of HQ exceeded unity for 87% of adult participants of the metal recycling community (39% had a HQ>3), while 20% of adult participants from the reference village had an HQ>1. We found an elevated health risk from dietary exposure to Cd in the metal recycling village compared to the reference community. WHO standard of 0.4mg Cd/kg rice may not be protective where people consume large amounts of rice/have relatively low body weight.


Subject(s)
Cadmium Poisoning/epidemiology , Food Contamination/analysis , Recycling , Adolescent , Adult , Age Factors , Aged , Cadmium Poisoning/etiology , Child , Child, Preschool , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Middle Aged , Oryza/adverse effects , Oryza/chemistry , Recycling/statistics & numerical data , Risk Assessment , Sex Factors , Surveys and Questionnaires , Vietnam/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...