Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(37): 14824-14832, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36074721

ABSTRACT

Basal plane-functionalized NbS2 nanosheets were obtained using in situ photolysis to generate the coordinatively unsaturated organometallic fragment cyclopentadienyl manganese(I) dicarbonyl (CpMn(CO)2). Under UV irradiation, a labile carbonyl ligand dissociates from the tricarbonyl complex, creating an open coordination site for bonding between the Mn atom and the electron-rich sulfur atoms on the surface of the NbS2 nanosheets. In contrast, no reaction is observed with 2H-MoS2 nanosheets under the same reaction conditions. This difference in reactivity is consistent with the electronic structure calculations, which indicate stronger bonding of the organometallic fragment to electron-poor, metallic NbS2 than to semiconducting, electron-rich MoS2. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and powder X-ray diffraction (PXRD) were used to characterize the bonding between Mn and S atoms on the surface-functionalized nanosheets.

2.
RSC Adv ; 8(18): 9871-9878, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540842

ABSTRACT

The group VIb dichalcogenides (MX2, M = Mo, W; X= S, Se) have a layered molybdenite structure in which M atoms are coordinated by a trigonal prism of X atoms. Ternary solid solutions of MS x Se2-x were synthesized, microcrystals were grown by chemical vapor transport, and their morphologies and structures were characterized by using synchrotron X-ray diffraction, Rietveld refinement, DIFFaX simulation of structural disorder, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Double aberration corrected scanning transmission electron microscopy was used to determine the anion distributions in single-layer nanosheets exfoliated from the microcrystals. These experiments indicate that the size difference between S and Se atoms does not result in phase separation, consistent with earlier studies of MX2 monolayer sheets grown by chemical vapor deposition. However, stacking faults occur in microcrystals along the layering axis, particularly in sulfur-rich compositions of MS x Se2-x solid solutions.

3.
J Am Chem Soc ; 138(15): 5143-9, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27031870

ABSTRACT

The controlled exfoliation of transition metal dichalcogenides (TMDs) into pristine single- or few-layer nanosheets remains a significant barrier to fundamental studies and device applications of TMDs. Here we report a novel strategy for exfoliating crystalline MoS2 into suspensions of nanosheets with retention of the semiconducting 2H phase. The controlled reaction of MoS2 with substoichiometric amounts n-butyllithium results in intercalation of the edges of the crystals, which are then readily exfoliated in a 45 vol % ethanol-water solution. Surprisingly, the resulting colloidal suspension of nanosheets was found (by electron microscopy and atomic force microscopy) to consist mostly of trilayers. The efficiency of exfoliation of the pre-intercalated sample is increased by at least 1 order of magnitude relative to the starting MoS2 microcrystals, with a mass yield of the dispersed nanosheets of 11-15%.

4.
Nano Lett ; 15(9): 5956-60, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26288218

ABSTRACT

Exfoliated 2H molybdenum disulfide (MoS2) has unique properties and potential applications in a wide range of fields, but corresponding studies have been hampered by the lack of effective routes to it in bulk quantities. This study presents a rapid and efficient route to obtain exfoliated 2H MoS2, which combines fast sonication-assisted lithium intercalation and infrared (IR) laser-induced phase reversion. We found that the complete lithium intercalation of MoS2 with butyllithium could be effected within 1.5 h with the aid of sonication. The 2H to 1T phase transition that occurs during the lithium intercalation could be also reversed by IR laser irradiation with a DVD optical drive.

5.
Sci Rep ; 5: 10013, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26066766

ABSTRACT

Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...