Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 202(5): 1077-1084, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32030461

ABSTRACT

Plant material falling into the ultra-basic (pH 11.5-11.9) springs within The Cedars, an actively serpentinizing site in Sonoma County, California, is subject to conditions that mimic the industrial pretreatment of lignocellulosic biomass for biofuel production. We sought to obtain hemicellulolytic/cellulolytic bacteria from The Cedars springs that are capable of withstanding the extreme alkaline conditions wherein calcium hydroxide-rich water removes lignin, making cell wall polysaccharides more accessible to microorganisms and their enzymes. We enriched for such bacteria by adding plant debris from the springs into a synthetic alkaline medium with ground tissue of the biofuel crop switchgrass (Panicum virgatum L.) as the sole source of carbon. From the enrichment culture we isolated the facultative anaerobic bacterium Cellulomonas sp. strain FA1 (NBRC 114238), which tolerates high pH and catabolizes the major plant cell wall-associated polysaccharides cellulose, pectin, and hemicellulose. Strain FA1 in monoculture colonized the plant material and degraded switchgrass at a faster rate than the community from which it was derived. Cells of strain FA1 could be acclimated through subculturing to grow at a maximal concentration of 13.4% ethanol. A strain FA1-encoded ß-1, 4-endoxylanase expressed in E. coli was active at a broad pH range, displaying near maximal activity at pH 6-9. Discovery of this bacterium illustrates the value of extreme alkaline springs in the search for microorganisms with potential for consolidated bioprocessing of plant biomass to biofuels and other valuable bio-inspired products.


Subject(s)
Biofuels/microbiology , Cellulomonas/isolation & purification , Cellulomonas/metabolism , Endo-1,4-beta Xylanases/metabolism , Lignin/metabolism , Base Composition/genetics , Biomass , Cellulose/metabolism , Endo-1,4-beta Xylanases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Panicum/chemistry , Panicum/genetics , Panicum/metabolism , Pectins/metabolism , Phylogeny , Plants/metabolism , Polysaccharides/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Genome Announc ; 3(3)2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26089422

ABSTRACT

We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

SELECTION OF CITATIONS
SEARCH DETAIL