Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 849
Filter
1.
Nanoscale Adv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39139713

ABSTRACT

Minimizing the contact barriers at the interface, forming between two different two-dimensional metals and semiconductors, is essential for designing high-performance optoelectronic devices. In this work, we design different types of metal-semiconductor heterostructures by combining 2D metallic MX2 (M = Nb, Hf; X = S, Se) and 2D semiconductor SiH and investigate systematically their electronic properties and contact characteristics using first principles calculations. We find that all the MX2/SiH (M = Nb, Ta; X = S, Se) heterostructures are energetically stable, suggesting that they could potentially be synthesized in the future. Furthermore, the generation of the MX2/SiH metal-semiconductor heterostructures leads to the formation of the Schottky contact with ultra-low Schottky barriers of a few tens of meV. This finding suggests that all the 2D MX2 (M = Nb, Ta; X = S, Se) metals act as effective electrical contact 2D materials to contact with the SiH semiconductor, enabling electronic devices with high charge injection efficiency. Furthermore, the tunneling resistivity of all the MX2/SiH (M = Nb, Ta; X = S, Se) MSHs is low, confirming that they exhibit high electron injection efficiency. Our findings underscore fundamental insights for the design of high-performance multifunctional Schottky devices based on the metal-semiconductor MX2/SiH heterostructures with ultra-low contact barriers and high electron injection efficiency.

2.
PLoS Pathog ; 20(8): e1012400, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133742

ABSTRACT

Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.

3.
Nanoscale Adv ; 6(16): 4128-4136, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39114137

ABSTRACT

Breaking structural symmetry in two-dimensional layered Janus materials can result in enhanced new phenomena and create additional degrees of piezoelectric responses. In this study, we theoretically design a series of Janus monolayers HfGeZ3H (Z = N, P, As) and investigate their structural characteristics, crystal stability, piezoelectric responses, electronic features, and carrier mobility using first-principles calculations. Phonon dispersion analysis confirms that HfGeZ3H monolayers are dynamically stable and their mechanical stability is also confirmed through the Born-Huang criteria. It is demonstrated that while HfGeN3H is a semiconductor with a large bandgap of 3.50 eV, HfGeP3H and HfGeAs3H monolayers have narrower bandgaps being 1.07 and 0.92 eV, respectively. When the spin-orbit coupling is included, large spin-splitting energy is found in the electronic bands of HfGeZ3H. Janus HfGeZ3H monolayers can be treated as piezoelectric semiconductors with the coexistence of both in-plane and out-of-plane piezoelectric responses. In particular, HfGeZ3H monolayers exhibit ultra-high electron mobilities up to 6.40 × 103 cm2 V-1 s-1 (HfGeAs3H), indicating that they have potential for various applications in nanoelectronics.

4.
RSC Adv ; 14(30): 21982-21990, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38993506

ABSTRACT

In this article, an attempt is made to explore new materials for applications in piezoelectric and electronic devices. Based on density functional theory calculation, we construct three Janus ZrGeZ3H (Z = N, P, and As) monolayers and study their stability, piezoelectricity, Raman response, and carrier mobility. The results from phonon dispersion spectra, ab initio molecular dynamics simulation, and elastic coefficients confirm the structural, thermal, and mechanical stability of these proposed structures. The ZrGeZ3H monolayers are indirect band gap semiconductors with favourable band gap energy of 1.15 and 1.00 eV for the ZrGeP3H and ZrGeAs3H, respectively, from Heyd-Scuseria-Ernzerhof functional method. It is found that the Janus ZrGeZ3H monolayers possess both in-plane and out-of-plane piezoelectric coefficients, revealing that they are potential piezoelectric candidates. In addition, the carrier mobilities of electrons and holes along transport directions are anisotropic. Notably, the ZrGeP3H and ZrGeAs3H monolayers have high electron mobility of 3639.20 and 3408.37 cm2 V-1 s-1, respectively. Our findings suggest the potential application of the Janus ZrGeZ3H monolayers in the piezoelectric and electronic fields.

5.
Environ Res ; 260: 119626, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019143

ABSTRACT

The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.

6.
Article in English | MEDLINE | ID: mdl-39038586

ABSTRACT

BACKGROUND: A preference for type 2 immunity plays a central role in the pathogenesis of atopic dermatitis (AD). Dupilumab, a monoclonal antibody targeting the IL-4α receptor subunit, inhibits IL-4 and IL-13 signaling. These cytokines contribute significantly to IgE class switch recombination in B-cells, critical in atopic diseases. Recent studies indicate IgG+CD23hiIL-4RA+ memory B-cells (MBC2) as IgE-producing B-cell precursors, linked to total IgE serum levels in atopic patients. Total IgE serum levels decreased during dupilumab treatment in previous studies. OBJECTIVE: To assess the effects of dupilumab treatment in comparison to alternative therapies on the frequency of MBC2 and the correlation to total IgE levels in pediatric patients with AD. METHODS: Pediatric patients with AD, participating in an ongoing trial, underwent randomization into three treatment groups: dupilumab (n=12), cyclosporine (n=12), or topical treatment (n=12). Plasma and Peripheral Blood Mononuclear Cells (PBMCs) were collected at baseline (T0) and after 6 months (T6). Flow cytometry was employed for PBMC phenotyping, ELISA was utilized to assess total IgE levels in plasma. For detailed Methods, please see the Methods section in this article's Online Repository at www.jacionline.org RESULTS: Our findings revealed a significant reduction in MBC2 frequency and total IgE levels among patients treated with dupilumab. Additionally, a significant correlation was observed between MBC2s and total IgE levels CONCLUSION: Systemic blocking of the IL-4RA subunit leads to a decrease in circulating MBC2 cells and total IgE in pediatric AD patients. Our findings unveil a novel mechanism through which dupilumab exerts its influence on the atopic signature.

7.
Environ Res ; 260: 119587, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992755

ABSTRACT

This study examines catalytic ability of various zeolite materials in converting discarded tire pyrolyzed oil by employing a moderate sized pyrolysis plant of a 10 L working volume. The study revealed that the yield of liquid fractions using γ-Al2O3 was greater than that of HZSM-5 and HY, while the yield of condensates were limited in the absence of catalyst. The tire waste pyrolysis oil catalytcially enhanced by alumina catalyst analyzed using Fourier transform infrared spectroscopy exhibited the stretching bands corresponding to aromatic and non-aromatic compounds. The GC MS analysis revealed that the cyclic unsaturated fragment percentages in liquids were decreased by the catalysts to 53.9% with HY, 59.0% with γ-Al2O3, and 62.2% with HZSM-5, which in turn was converted into aromatic chemicals. Nitrogen adsorption desorption analysis revealed that γ-Al2O3 has an enhanced surface area of 635 m2/g which improved its catalytic performance. The cracked liquid oil had viscosity (10.36 cSt), values of pour and flash temperatures of -2.2 °C and 41 °C respectively, analogous to petroleum diesel. The upgraded pyrolysis oil (10%) is blended with gasoline (90%), and emission analysis was performed. Moreover, liquid oil needs post treatment (refining) for its use as energy source in transportation application. The novelty of this research is in its comparative analysis of multiple catalysts under controlled conditions using a small pilot-scale pyrolysis reactor, which provides insights into optimizing the pyrolysis process for industrial applications.

8.
BMC Genomics ; 25(1): 710, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044130

ABSTRACT

BACKGROUND: Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS: Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS: We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.


Subject(s)
Evolution, Molecular , Phylogeny , Phytophthora infestans , Transcription Factors , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Binding Sites , Protein Binding
9.
Physiol Meas ; 45(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39048099

ABSTRACT

Objective.The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist.Approach.We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set.Main results.All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92.Significance.We compared performance of four models on an open-access dataset.


Subject(s)
Deep Learning , Electrocardiography , Humans , Electrocardiography/methods , Male , Female , Middle Aged , Adult , Aged , Young Adult , Signal Processing, Computer-Assisted
10.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39012179

ABSTRACT

Inertial confinement fusion experiments taking place at the National Ignition Facility are generating ever increasing amounts of fusion energy, with the deuterium tritium fusion neutron yield growing a hundredfold over the past ten years. Strategies must be developed to mitigate this harsh environment's deleterious effects on the operation and the performance of the time-resolved x-ray imagers deployed in the National Ignition Facility target bay to record the dynamics of the implosions. We review the evolution of these imagers in recent years and detail some of the past and present efforts undertaken to maintain or improve the quality of the experimental data collected on high neutron yield experiments. These include the use of a dump-and-read electronic backend, the selection of photographic film with a low background sensitivity, and the optical filtering of Cherenkov radiation.

11.
Phys Chem Chem Phys ; 26(27): 18892-18897, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949400

ABSTRACT

In this study, using the tight-binding model and Green's function technique, we investigate potential electronic phase transitions in bilayer P6mmm borophene under the influence of external stimuli, including a perpendicular electric field, electron-hole coupling between sublayers (excitonic effects), and dopants. Our focus is on key electronic properties such as the band structure and density of states. Our findings reveal that the pristine lattice is metal with Dirac cones around the Fermi level, where their intersection forms a nodal line. The system undergoes transitions to a semiconducting state - elimination of nodal line - with a perpendicular electric field and a semimetallic state - transition from two Dirac cones to a single Dirac cone - with combined electric field and excitonic effects. Notably, with these, the system retains its massless Dirac-like bands characteristic at finite energy. However, introducing a dopant still leads to a metallic phase, but the Dirac-like bands become massive. Considering all these effects, the system ultimately reaches a semiconducting phase with massive Dirac-like bands. These results hold significance for optoelectronic applications.

12.
Environ Res ; 257: 119334, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38838750

ABSTRACT

In this study, bimetallic Cu-Fe nanoparticles were synthesized using the green approach with Piper betle leaves, and the removal efficiency of one of the pharmaceutical compounds, Atorvastatin, was investigated. UV, SEM, FTIR, EDAX, particle size, and zeta potential measurements were used to confirm nanoparticle fabrication. The removal efficiency of Atorvastatin (10 mg/L) by bimetallic Cu-Fe nanoparticles was 67% with a contact time of 30 min at pH 4, the adsorbent dosage of 0.2 g/L, and stirring at 100 rpm. Piper betle bimetallic Cu-Fe nanoparticles have demonstrated excellent stability, reusability, and durability, even after being reused five times. Furthermore, the synthesized bimetallic Cu-Fe nanoparticles demonstrated remarkable antimicrobial properties against gram-negative strains such as Escherichia coli and Klebsiella pneumoniae, gram-positive strains such as Staphylococcus aureus and Bacillus subtilis, and fungi such as Aspergillus niger. In addition, the antioxidant properties of the synthesized bimetallic Cu-Fe nanoparticles were assessed using the DPPH radical scavenging assay. The results indicated that the nanoparticles had good antioxidant activity. Thus, using Piper betle extract to make Cu-Fe nanoparticles made the procedure less expensive, chemical-free, and environmentally friendly, and the synthesized bimetallic Cu-Fe nanoparticles helped remove the pharmaceutical compound Atorvastatin from wastewater.


Subject(s)
Atorvastatin , Copper , Iron , Metal Nanoparticles , Piper betle , Plant Leaves , Water Pollutants, Chemical , Atorvastatin/chemistry , Plant Leaves/chemistry , Copper/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Piper betle/chemistry , Pyrroles/chemistry
13.
BMJ Open ; 14(6): e081280, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925697

ABSTRACT

INTRODUCTION: Children with atopic dermatitis (AD) are more at risk for the neurodevelopmental disorders attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) with parallel increases in global prevalences. Children afflicted with these conditions appear to share similar problems in sensory modulation but investigational studies on the underlying aetiology are scarce. This scoping review aims to find knowledge gaps, collate hypotheses and to summarise available evidence on the shared pathophysiology of AD, ADHD and ASD in children. METHODS AND ANALYSIS: Our study will follow the methodological manual published by the Joanna Briggs Methodology for Scoping Reviews and will be reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews. The following electronic databases will be searched for studies focused on children with AD and symptoms of ADHD and/or ASD: Medline ALL via Ovid, Embase, Web of Science Core Collection and the Cochrane Central Register of Controlled Trials via Wiley. ETHICS AND DISSEMINATION: This review does not require ethics approval as it will not be conducted with human participants. We will only use published data. Our dissemination strategy includes peer review publication and conference reports.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Dermatitis, Atopic , Systematic Reviews as Topic , Humans , Dermatitis, Atopic/complications , Autism Spectrum Disorder/complications , Child , Research Design
14.
Eur Heart J ; 45(20): 1831-1839, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38740526

ABSTRACT

BACKGROUND AND AIMS: Arrhythmic mitral valve prolapse (AMVP) is linked to life-threatening ventricular arrhythmias (VAs), and young women are considered at high risk. Cases of AMVP in women with malignant VA during pregnancy have emerged, but the arrhythmic risk during pregnancy is unknown. The authors aimed to describe features of women with high-risk AMVP who developed malignant VA during the perinatal period and to assess if pregnancy and the postpartum period were associated with a higher risk of malignant VA. METHODS: This retrospective international multi-centre case series included high-risk women with AMVP who experienced malignant VA and at least one pregnancy. Malignant VA included ventricular fibrillation, sustained ventricular tachycardia, or appropriate shock from an implantable cardioverter defibrillator. The authors compared the incidence of malignant VA in non-pregnant periods and perinatal period; the latter defined as occurring during pregnancy and within 6 months after delivery. RESULTS: The authors included 18 women with AMVP from 11 centres. During 7.5 (interquartile range 5.8-16.6) years of follow-up, 37 malignant VAs occurred, of which 18 were pregnancy related occurring in 13 (72%) unique patients. Pregnancy and 6 months after delivery showed increased incidence rate of malignant VA compared to the non-pregnancy period (univariate incidence rate ratio 2.66, 95% confidence interval 1.23-5.76). CONCLUSIONS: The perinatal period could impose increased risk of malignant VA in women with high-risk AMVP. The data may provide general guidance for pre-conception counselling and for nuanced shared decision-making between patients and clinicians.


Subject(s)
Mitral Valve Prolapse , Pregnancy Complications, Cardiovascular , Humans , Female , Pregnancy , Mitral Valve Prolapse/complications , Mitral Valve Prolapse/epidemiology , Retrospective Studies , Adult , Pregnancy Complications, Cardiovascular/epidemiology , Risk Factors , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/etiology , Puerperal Disorders/epidemiology , Puerperal Disorders/etiology , Defibrillators, Implantable , Incidence , Ventricular Fibrillation/epidemiology , Ventricular Fibrillation/etiology , Postpartum Period
16.
mBio ; 15(5): e0045524, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38526088

ABSTRACT

Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs. Here, we generate a "top 10" list of priorities, opportunities, and challenges for the explicit integration of microorganisms into ESMs. We discuss the need for coarse-graining microbial information into functionally relevant categories, as well as the capacity for microorganisms to rapidly evolve in response to climate-change drivers. Microbiologists are uniquely positioned to collect novel and valuable information necessary for next-generation ESMs, but this requires data harmonization and transdisciplinary collaboration to effectively guide adaptation strategies and mitigation policy.


Subject(s)
Climate Change , Earth, Planet , Models, Theoretical , Bacteria/genetics , Biodiversity , Humans , Ecosystem
17.
medRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38352374

ABSTRACT

Objective: The 12-lead electrocardiogram (ECG) is routine in clinical use and deep learning approaches have been shown to have the identify features not immediately apparent to human interpreters including age and sex. Several models have been published but no direct comparisons exist. Approach: We implemented three previously published models and one unpublished model to predict age and sex from a 12-lead ECG and then compared their performance on an open-access data set. Main results: All models converged and were evaluated on the holdout set. The best preforming age prediction model had a hold-out set mean absolute error of 8.06 years. The best preforming sex prediction model had a hold-out set area under the receiver operating curve of 0.92. Significance: We compared performance of four models on an open-access dataset.

18.
RSC Adv ; 14(7): 4966-4974, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38327810

ABSTRACT

The auxetic materials have exotic mechanical properties compared to conventional materials, such as higher indentation resistance, more superior sound absorption performance. Although the auxetic behavior has also been observed in two-dimensional (2D) nanomaterials, to date there has not been much research on auxetic materials in the vertical asymmetric Janus 2D layered structures. In this paper, we explore the mechanical, electronic, and transport characteristics of Janus Si2OX (X = S, Se, Te) monolayers by first-principle calculations. Except for the Si2OTe monolayer, both Si2OS and Si2OSe are found to be stable. Most importantly, both Si2OS and Si2OSe monolayers are predicted to be auxetic semiconductors with a large negative Poisson's ratio. The auxetic behavior is clearly observed in the Janus Si2OS monolayer with an extremely large negative Poisson's ratio of -0.234 in the x axis. At the equilibrium state, both Si2OS and Si2OSe materials exhibit indirect semiconducting characteristics and their band gaps can be easily altered by the mechanical strain. More interestingly, the indirect-direct bandgap phase transitions are observed in both Si2OS and Si2OSe monolayers when the biaxial strains are introduced. Further, the studied Janus structures also exhibit remarkably high electron mobility, particularly along the x direction. Our findings demonstrate that Si2OS and Si2OSe monolayers are new auxetic materials with asymmetric structures and show their great promise in electronic and nanomechanical applications.

19.
Nanoscale Adv ; 6(4): 1193-1201, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38356616

ABSTRACT

The emergence of van der Waals (vdW) heterostructures, which consist of vertically stacked two-dimensional (2D) materials held together by weak vdW interactions, has introduced an innovative avenue for tailoring nanoelectronic devices. In this study, we have theoretically designed a metal/semiconductor heterostructure composed of NbS2 and Janus MoSSe, and conducted a thorough investigation of its electronic properties and the formation of contact barriers through first-principles calculations. The effects of stacking configurations and the influence of external electric fields in enhancing the tunability of the NbS2/Janus MoSSe heterostructure are also explored. Our findings demonstrate that the NbS2/MoSSe heterostructure is not only structurally and thermally stable but also exfoliable, making it a promising candidate for experimental realization. In its ground state, this heterostructure exhibits p-type Schottky contacts characterized by small Schottky barriers and low tunneling barrier resistance, showing its considerable potential for utilization in electronic devices. Additionally, our findings reveal that the electronic properties, contact barriers and contact types of the NbS2/MoSSe heterostructure can be tuned by applying electric fields. A negative electric field leads to a conversion from a p-type Schottky contact to an n-type Schottky contact, whereas a positive electric field gives rise to a transformation from a Schottky into an ohmic contact. These insights offer valuable theoretical guidance for the practical utilization of the NbS2/MoSSe heterostructure in the development of next-generation electronic and optoelectronic devices.

20.
Nanoscale ; 16(17): 8361-8368, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38323509

ABSTRACT

The properties of nanostructured networks of conductive materials have been extensively studied under the lens of percolation theory. In this work, we introduce a novel type of local percolation phenomenon used to investigate the conduction properties of a new hybrid material that combines sparse metallic nanowire networks and fractured conducting thin films on flexible substrates. This original concept could potentially lead to the design of a novel composite transparent conducting material. Using a complementary approach including formal analytical derivations, Monte Carlo simulations and electrical circuit representation for the modelling of bridged-percolating nanowire networks, we unveil the key relations between linear crack density, nanowire length and network areal mass density that ensure electrical percolation through the hybrid. The proposed theoretical model provides key insights into the conduction mechanism associated with the original concept of bridge percolation in random nanowire networks.

SELECTION OF CITATIONS
SEARCH DETAIL