Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
NanoImpact ; 35: 100514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821169

ABSTRACT

Nanoplastics are anticipated to be ubiquitous in various environmental compartments. However, challenges in analytical methods hinder our understanding of risks related to specific nanplastics characteristics such as size and chemical compositions, and interactions between nanoplastics and microorganisms. In this study, we applied fit-for-purpose analytical methods and techniques to understand how nanoplastic chemical composition influences their interaction with bacteria collected from activated sludge. When exposed to polystyrene (PS) and polyvinyl chloride (PVC) nanoplastics for 5 days, the nanoplastics attached to the bacteria. Specifically, on day 1, there was a significant predominance of PS nanoplastics over PVC ones of similar size and shape, possibly due to differences in their chemical composition. After 5 days, there is a substantial decrease in nanoplastics attached to bacteria, suggesting bacterial defence mechanisms may reduce particles attachment over time. The overall bacterial community structure demonstrated a high degree of resilience. This resilience highlights the ability of microbial communities to maintain their structure despite nanoplastic stressors, as evidenced by consistent alpha diversity, PCoA, and PERMANOVA results. Understanding these mechanisms is crucial for assessing nanoplastic fate and thus environmental impacts.


Subject(s)
Bacteria , Polystyrenes , Polyvinyl Chloride , Sewage , Sewage/microbiology , Polyvinyl Chloride/chemistry , Polystyrenes/chemistry , Nanoparticles/chemistry
2.
Molecules ; 28(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38005345

ABSTRACT

Thickener, also known as a gelling agent, is a critical component of lubricating greases. The most critical property of thickener, temperature resistance, is determined by the molecular structure of the compounds. Currently, all high-temperature-resistant thickeners are based on 12-hydroxystearic acid, which is exclusively produced from castor oil. Since castor oil is also an important reagent for other processes, finding a sustainable alternative to 12-hydroxystearic acid has significant economic implications. This study synthesises an alternative thickener from abundant agricultural waste, cashew nut shell liquor (CNSL). The synthesis and separation procedure contains three steps: (i) forming and separating calcium anacardate by precipitation, (ii) forming and separating anacardic acid (iii) forming lithium anacardate. The obtained lithium anacardate can be used as a thickener for lubricating grease. It was found that the recovery of anacardic acid was around 80%. The optimal reaction temperature and time conditions for lithium anacardate were 100 °C and 1 h, respectively. The method provides an economical alternative to castor and other vegetable oils. The procedure presents a simple pathway to produce the precursor for the lubricating grease from agricultural waste. The first reaction step can be combined with the existing distillation of cashew nut shell processing. An effective application can promote CNSL to a sustainable feedstock for green chemistry. The process can also be combined with recycled lithium from the spent batteries to improve the sustainability of the battery industry.

3.
In Vivo ; 37(4): 1743-1750, 2023.
Article in English | MEDLINE | ID: mdl-37369463

ABSTRACT

BACKGROUND/AIM: A prospective randomized, open-label, single-blinded clinical trial was conducted to evaluate the efficacy of AFree on the symptoms and course of moderate and severe COVID-19 in the field hospital. PATIENTS AND METHODS: Two hundred hospitalized patients diagnosed with COVID-19 were enrolled. The patients were randomized into 100 patients in the interventional AFree group and 100 in the control group. The AFree group patients were treated with AFree oral spray in conjunction with the standard COVID-19 treatment protocol, while the control group of patients were treated with only standard care. RESULTS: Patients of the AFree group demonstrated a remarkedly faster improvement in all COVID-19-related symptoms, resulting in a shorter time for complete recovery than the control group. More importantly, they showed a shorter time for complete viral clearance. Adding AFree to the standard of care protocol also significantly improved the restoration of taste and smell and reduced lung infiltration. Additionally, the patients in the AFree group also exhibited fewer adverse effects related to treatment. CONCLUSION: AFree oral spray is a simple-to-use, safe, and effective adjunctive treatment for moderate and severe COVID-19 cases. AFree oral spray was demonstrated to potentially be effective for COVID-19 prevention.


Subject(s)
COVID-19 , Humans , Oral Sprays , SARS-CoV-2 , COVID-19 Drug Treatment , Prospective Studies , Mobile Health Units , Treatment Outcome
4.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835521

ABSTRACT

Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanostructures , Humans , Gold , Nanotechnology , Nanomedicine
5.
Sci Total Environ ; 858(Pt 1): 159569, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36272481

ABSTRACT

Bio-based plastics (BP) produced from renewable biomass resources, such as high-density polyethylene (HDPE), polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), is currently increasing in terms of both products and applications. However, their biodegradability and environmental fate are not yet fully understood, especially in freshwaters. Here, we present the results of an in-situ study in a freshwater reservoir, where we submerged HDPE, PLA and PHBV microscale BP (mBP) in dialysis bags to enable exchange of small organic and inorganic molecules, including nutrients, with the surrounding water. After one and two months, the bacterial biofilm that formed on each mBP was characterised by 16S rRNA amplicon sequencing. After two-months, Oxalobacteraceae, Pedosphaeraceae, Flavobacteriaceae (Flavobacterium) and Chitinophagaceae (Ferruginibacter) had increased by up to four times. Both these and other common members (≥1 % relative total biomass) of the microbial community were similarly abundant on all mBP. Low-abundance (0.3-1 %) bacterial taxa, however, were significantly more diverse and differed on each mBP. Notably, some low-abundance families and genera increased on specific materials, e.g. Sphingomonadaceae on HDPE, Sphingobacteriaceae on PHBV, Gemmatimonas and Crenothrix on PLA. Overall, abundant bacteria were regarded as a pioneering community, while low-abundance bacteria were more diverse and preferred mBP types in the early stages of biofilm formation on mBP. It could be influenced by the environmental conditions, where nutrient levels and low temperatures might shape the low-abundance of attached bacterial communities than the plastic material itself.


Subject(s)
Microplastics , Plastics , Humans , RNA, Ribosomal, 16S/genetics , Polyethylene , Renal Dialysis , Fresh Water , Biofilms , Bacteria , Polyesters
6.
Nanoscale ; 14(48): 18143-18156, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36449011

ABSTRACT

Decades of antibiotic use and misuse have generated selective pressure toward the rise of antibiotic-resistant bacteria, which now contaminate our environment and pose a major threat to humanity. According to the evolutionary "Red queen theory", developing new antimicrobial technologies is both urgent and mandatory. While new antibiotics and antibacterial technologies have been developed, most fail to penetrate the biofilm that protects bacteria against external antimicrobial attacks. Hence, new antimicrobial formulations should combine toxicity for bacteria, biofilm permeation ability, biofilm deterioration capability, and tolerability by the organism without renouncing compatibility with a sustainable, low-cost, and scalable production route as well as an acceptable ecological impact after the ineluctable release of the antibacterial compound in the environment. Here, we report on the use of silver nanoparticles (NPs) doped with magnetic elements (Co and Fe) that allow standard silver antibacterial agents to perforate bacterial biofilms through magnetophoretic migration upon the application of an external magnetic field. The method has been proved to be effective in opening micrometric channels and reducing the thicknesses of models of biofilms containing bacteria such as Enterococcus faecalis, Enterobacter cloacae, and Bacillus subtilis. Besides, the NPs increase the membrane lipid peroxidation biomarkers through the formation of reactive oxygen species in E. faecalis, E. cloacae, B. subtilis, and Pseudomonas putida colonies. The NPs are produced using a one-step, scalable, and environmentally low-cost procedure based on laser ablation in a liquid, allowing easy transfer to real-world applications. The antibacterial effectiveness of these magnetic silver NPs may be further optimized by engineering the external magnetic fields and surface conjugation with specific functionalities for biofilm disruption or bactericidal effectiveness.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Silver/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis , Magnetic Phenomena , Microbial Sensitivity Tests
7.
Polymers (Basel) ; 14(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35956636

ABSTRACT

The accumulation of organic contaminants including dyes in aquatic systems is of significant environmental concern, necessitating the development of affordable and sustainable materials for the treatment/elimination of these hazardous pollutants. Here, a green synthesis strategy has been used to develop a self-assembled gum kondagogu-sodium alginate bioconjugate sponge adorned with silver nanoparticles, for the first time. The properties of the nanocomposite sponge were then analyzed using FTIR, TGA, SEM, and MicroCT. The ensued biobased sponge exhibited hierarchical microstructure, open cellular pores, good shape memory, and mechanical properties. It merges the attributes of an open cellular porous structure with metal nanoparticles and are envisaged to be deployed as a sustainable catalytic system for reducing contaminants in the aqueous environment. This nanocomposite sponge showed enhanced catalytic effectiveness (km values up to 37 min-1 g-1 and 44 min-1 g-1 for methylene blue and 4-nitrophenol, respectively), antibacterial properties, reusability, and biodegradability (65% biodegradation in 28 days).

8.
J Hazard Mater ; 439: 129627, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35872458

ABSTRACT

Nanoscale zero-valent iron (nZVI) has increasingly been applied to remediate aquifers polluted by organochlorines or heavy metals. As a result, bacteria in the vicinity of remediate action can be stressed by surplus iron released from nZVI. However, the understanding of the iron stress defense pathways during this process is currently incomplete. Therefore, we aimed to elucidate the physiological and transcriptomic response of the bacterium, Pseudomonas putida NCTC 10936, to 100 mg/L of nZVI and 44.5 µg/L of dissolved iron obtained from nZVI suspension. Cell viability was neither affected by nZVI nor dissolved iron, although the dissolved iron caused stress that altered the cell physiology and caused the generation of smaller cells, whereas cells were elongated in the presence of nZVI. Transcriptomic analysis confirmed the observed stronger physiological effect caused by dissolved iron (in total 3839 differentially expressed genes [DEGs]) than by nZVI (945 DEGs). Dissolved iron (but not nZVI) activated genes involved in oxidative stress-related pathways, antioxidant activity, carbohydrate and energy metabolism, but downregulated genes associated with flagellar assembly proteins and two-component systems involved in sensing external stimuli. As a result, bacteria very effectively faced oxidative insults and cell viability was not affected.


Subject(s)
Metals, Heavy , Pseudomonas putida , Iron , Oxidation-Reduction , Oxidative Stress , Pseudomonas putida/genetics
9.
Phys Rev Lett ; 128(14): 140601, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35476480

ABSTRACT

Out-of-time-ordered correlators (OTOCs) are a key observable in a wide range of interconnected fields including many-body physics, quantum information science, and quantum gravity. Measuring OTOCs using near-term quantum simulators will extend our ability to explore fundamental aspects of these fields and the subtle connections between them. Here, we demonstrate an experimental method to measure OTOCs at finite temperatures and use the method to study their temperature dependence. These measurements are performed on a digital quantum computer running a simulation of the transverse field Ising model. Our flexible method, based on the creation of a thermofield double state, can be extended to other models and enables us to probe the OTOC's temperature-dependent decay rate. Measuring this decay rate opens up the possibility of testing the fundamental temperature-dependent bounds on quantum information scrambling.

10.
Sci Total Environ ; 817: 152888, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34998775

ABSTRACT

Rising concern about emerging and already persisting pollutants in water has urged the scientific community to develop novel remedial techniques. A new group of remediation methods is based on the modification of nanoscale zero-valent iron particles (nZVI), which are well known for treating volatile organic compounds and heavy metals. The properties of nZVI may be further enhanced by modifying their structure or surface using "green" polymers. Herein, nZVI was modified by a ß-cyclodextrin polymer (ß-CDP), which is considered an environmentally safe and inexpensive adsorbent of contaminants. This composite was used for the first time for the degradation of sulfamethoxazole (SMX). Coating by ß-CDP not only enhanced the degradation of SMX (>95%, under 10 min) by the nanoparticles in a wide pH range (3-9) and enabled their efficient reusability (for three cycles) but also made the coated nZVI less toxic to the model bioindicator microalga Raphidocelis subcapitata. Moreover, degradation products of SMX were found to be less toxic to Escherichia coli bacteria and R. subcapitata microalga, contrary to the SMX antibiotic itself, indicating a simple and eco-friendly cleaning process. This research aims to further stimulate and develop novel remedial techniques based on nZVI, and provides a potential application in the degradation of antibiotics in a wide pH range. Moreover, the wealth of available cyclodextrin materials used for surface modification may open a way to discover more efficient and attractive composites for environmental applications.


Subject(s)
Cyclodextrins , Metals, Heavy , Water Pollutants, Chemical , Cellulose , Iron/chemistry , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Health Psychol Rep ; 10(4): 266-279, 2022.
Article in English | MEDLINE | ID: mdl-38084134

ABSTRACT

BACKGROUND: Many studies have shown the effects of parental migration on the psychological and daily life of left-behind children (LBC) of labor migrant parents, but the results on school-related problems of LBC remain inconsistent. Additionally, there is a dearth of research on the factors affecting school problems among LBC, especially in the socio-cultural context of Vietnam. The purpose of this study was to confirm the school problems encountered by LBC in comparison with non-left-behind children (non-LBC). The study also aimed to examine variables of bonding of caregivers with children and resilience of children affecting school problems of LBC. PARTICIPANTS AND PROCEDURE: The convenient sampling approach was used in the study. The study sample included 792 Vietnamese school students (Mage = 12.65, SD = 1.60), with 439 children of labor migrant parents and a control group of 353 children of non-migrant parents. The School Problem Questionnaire, Parental Bonding Instrument and the Resilience Scale were employed in this study. RESULTS: There was no difference in school problems between the LBC and non-LBC groups. Resilience by goal planning (RGP), resilience by affect control (RAC), and resilience by family support (RFS) were identified as protective variables for children to overcome difficulties encountered in schools, with regression coefficients of -.21, -.33 and -.20, respectively. Meanwhile, bonding of caregivers with children by control (BCCo), and resilience by positive thinking (RPT) were found to be factors that increase school problems among LBC with the same regression coefficient of .12. CONCLUSIONS: Activities to support LBC should pay attention to improving resilience, namely affect control, goal planning, and promoting the role of caregivers for LBC.

12.
Phys Rev Lett ; 126(22): 220503, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34152167

ABSTRACT

In order to scale up quantum processors and achieve a quantum advantage, it is crucial to economize on the power requirement of two-qubit gates, make them robust to drift in experimental parameters, and shorten the gate times. Applicable to all quantum computer architectures whose two-qubit gates rely on phase-space closure, we present here a new gate-optimizing principle according to which negligible amounts of gate fidelity are traded for substantial savings in power, which, in turn, can be traded for substantial increases in gate speed and/or qubit connectivity. As a concrete example, we illustrate the method by constructing optimal pulses for entangling gates on a pair of ions within a trapped-ion chain, one of the leading quantum computing architectures. Our method is direct, noniterative, and linear, and, in some parameter regimes, constructs gate-steering pulses requiring up to an order of magnitude less power than the standard method. Additionally, our method provides increased robustness to mode drift. We verify the new trade-off principle experimentally on our trapped-ion quantum computer.

13.
Chemosphere ; 281: 130915, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34029963

ABSTRACT

Abiotic and biotic remediation of chlorinated ethenes (CEs) in groundwater from a real contaminated site was studied using biochar-based composites containing nanoscale zero-valent iron (nZVI/BC) and natural resident microbes/specific CE degraders supported by a whey addition. The material represented by the biochar matrix decorated by isolated iron nanoparticles or their aggregates, along with the added whey, was capable of a stepwise dechlorination of CEs. The tested materials (nZVI/BC and BC) were able to decrease the original TCE concentration by 99% in 30 days. Nevertheless, regarding the transformation products, it was clear that biotic as well as abiotic transformation mechanisms were involved in the transformation process when nonchlorinated volatiles (i.e., methane, ethane, ethene, and acetylene) were detected after the application of nZVI/BC and nZVI/BC with whey. The whey addition caused a massive increase in bacterial biomass in the groundwater samples (monitored by 16S rRNA sequencing and qPCR) that corresponded with the transformation of trichloro- and dichloro-CEs, and this process was accompanied by the formation of less chlorinated products. Moreover, the biostimulation step also eliminated the adverse effect caused by nZVI/BC (decrease in microbial biomass after nZVI/BC addition). The nZVI/BC material or its aging products, and probably together with vinyl chloride-respiring bacteria, were able to continue the further reductive dechlorination of dichlorinated CEs into nonhalogenated volatiles. Overall, the results of the present study demonstrate the potential, feasibility, and environmental safety of this nanobioremediation approach.


Subject(s)
Groundwater , Water Pollutants, Chemical , Charcoal , RNA, Ribosomal, 16S/genetics , Solvents
14.
Carbohydr Polym ; 266: 118126, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34044942

ABSTRACT

Tree gums are a class of abundantly available carbohydrate polymers that have not been explored thoroughly in film fabrication for food packaging. Films obtained from pristine tree gums are often brittle, hygroscopic, and lack mechanical strength. This study focuses on the chemical modification of gum kondagogu using long-chain alkenyl groups of dodecenyl succinic anhydride (DDSA), an esterifying agent that introduces a 12-carbon hydrophobic chain to the kondagogu structure. The esterification reaction was confirmed by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The effect of nano-cellulose as an additive on various film properties was investigated. The developed films were characterized for their mechanical, morphological, optical, barrier, antibacterial, and biodegradable properties. The inclusion of long-chain carbon groups acted as internal plasticizers and resulted in an amorphous structure with better film-forming ability, improved hydrophobicity, and higher elongation at break values. The modified films exhibited antibacterial properties and excellent biodegradability under aerobic conditions.


Subject(s)
Alkenes/pharmacology , Bixaceae/chemistry , Food Packaging , Plant Gums/pharmacology , Succinic Anhydrides/chemistry , Alkenes/chemical synthesis , Alkenes/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacology , Elastic Modulus , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Materials Testing , Plant Gums/chemical synthesis , Plant Gums/chemistry , Staphylococcus aureus/drug effects , Tensile Strength
15.
Curr Microbiol ; 78(3): 979-991, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33521895

ABSTRACT

The application of zero-valent iron particles (ZVI) for the treatment of heavily polluted environment and its biological effects have been studied for at least two decades. Still, information on the impact on bacterial metabolic pathways is lacking. This study describes the effect of microscale and nanoscale ZVI (mZVI and nZVI) on the abundance of different metabolic pathways in freshwater bacterial communities. The metabolic pathways were inferred from metabolism modelling based on 16S rRNA gene sequence data using paprica pipeline. The nZVI changed the abundance of numerous metabolic pathways compared to a less influencing mZVI. We identified the 50 most affected pathways, where 31 were related to degradation, 17 to biosynthesis, and 2 to detoxification. The linkage between pathways was two times higher in nZVI samples compared to mZVI, and was specifically higher considering the arsenate detoxification II pathway. Limnohabitans and Roseiflexus were linked to the same pathways in both nZVI and mZVI. The prediction of metabolic pathways increases our knowledge of the impacts of nZVI and mZVI on freshwater bacterioplankton.


Subject(s)
Chloroflexi , Water Pollutants, Chemical , Fresh Water , Genes, rRNA , Iron , RNA, Ribosomal, 16S/genetics
17.
Nat Commun ; 11(1): 3720, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32709855

ABSTRACT

The quantum walk formalism is a widely used and highly successful framework for modeling quantum systems, such as simulations of the Dirac equation, different dynamics in both the low and high energy regime, and for developing a wide range of quantum algorithms. Here we present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor. We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter. The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.

18.
Sci Total Environ ; 708: 135134, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31796277

ABSTRACT

Organic-inorganic perovskite solar cells (PSCs) are promising candidates as photovoltaic cells. Recently, they have attracted significant attention due to certified power conversion efficiencies exceeding 23%, low-cost engineering, and superior electrical/optical characteristics. These PSCs extensively utilize a perovskite-structured composite with a hybrid of Pb-based nanomaterials. Operation of them may cause the release of Pb-based nanoparticles. However, limited information is available regarding the potential toxicity of Pb-based PSCs on various organisms. This study conducted a battery of in vitro and in vivo toxicity bioassays for three quintessential Pb-based PSCs (CH3NH3PbI3, NHCHNH3PbBr3, and CH3NH3PbBr3) using progressively more complex forms of life. For all species tested, the three different perovskites had comparable toxicities. The viability of Caco-2/TC7 cells was lower than that of A549 cells in response to Pb-based PSC exposure. Concentration-dependent toxicity was observed for the bioluminescent bacterium Vibrio fischeri, for soil bacterial communities, and for the nematode Caenorhabditis elegans. Neither of the tested Pb-based PSCs particles had apparent toxicity to Pseudomonas putida. Among all tested organisms, V. fischeri showed the highest sensitivity with EC50 values (30 min of exposure) ranging from 1.45 to 2.91 mg L-1. Therefore, this study recommends that V. fischeri should be preferably utilized to assess. PSC toxicity due to its increased sensitivity, low costs, and relatively high throughput in a 96-well format, compared with the other tested organisms. These results highlight that the developed assay can easily predict the toxic potency of PSCs. Consequently, this approach has the potential to promote the implementation of the 3Rs (Replacement, Reduction, and Refinement) principle in toxicology and decrease the dependence on animal testing when determining the safety of novel PSCs.

19.
Sci Rep ; 9(1): 13925, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558736

ABSTRACT

Zero-valent metal nanoparticles (Cu, Fe and Co) were prepared by the reactive method from their oxide with hydrogen. The energy-rich solutions of metal nanoparticles were used for treatment Maize seeds prior to sowing. The treatment significantly improved the germination rate and early growth. Furthermore, both SOD and APX enzyme activity in leaves were improved, and enhanced the metabolism of superoxide, leading to increased drought resistance. The method was applied to the field over three seasons and greatly improved the harvest. In particular, the implementation of Cu particles at 4 mg/kg increased the productivity of the two Maize species more than 20%.


Subject(s)
Metal Nanoparticles/chemistry , Zea mays/growth & development , Ascorbate Peroxidases/metabolism , Copper/chemistry , Droughts , Germination , Iron/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Seeds/growth & development , Seeds/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism , Superoxides/metabolism , Zea mays/metabolism , Zinc/chemistry
20.
Nanoscale Res Lett ; 13(1): 159, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29796771

ABSTRACT

Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga (Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll (Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.

SELECTION OF CITATIONS
SEARCH DETAIL