Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 40(5): 819-834, 2021 May.
Article in English | MEDLINE | ID: mdl-33725150

ABSTRACT

KEY MESSAGE: Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.


Subject(s)
Arabidopsis/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Droughts , Ectopic Gene Expression/genetics , Ectopic Gene Expression/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
2.
Biomolecules ; 9(11)2019 11 07.
Article in English | MEDLINE | ID: mdl-31703428

ABSTRACT

The NAC (NAM, ATAF1/2, CUC2) transcription factors are widely known for their various functions in plant development and stress tolerance. Previous studies have demonstrated that genetic engineering can be applied to enhance drought tolerance via overexpression/ectopic expression of NAC genes. In the present study, the dehydration- and drought-inducible GmNAC109 from Glycine max was ectopically expressed in Arabidopsis (GmNAC109-EX) plants to study its biological functions in mediating plant adaptation to water deficit conditions. Results revealed an improved drought tolerance in the transgenic plants, which displayed greater recovery rates by 20% to 54% than did the wild-type plants. In support of this finding, GmNAC109-EX plants exhibited lower water loss rates and decreased endogenous hydrogen peroxide production in leaf tissues under drought, as well as higher sensitivity to exogenous abscisic acid (ABA) treatment at germination and early seedling development stages. In addition, analyses of antioxidant enzymes indicated that GmNAC109-EX plants possessed stronger activities of superoxide dismutase and catalase under drought stress. These results together demonstrated that GmNAC109 acts as a positive transcriptional regulator in the ABA-signaling pathway, enabling plants to cope with adverse water deficit conditions.


Subject(s)
Arabidopsis/genetics , Glycine max/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Abscisic Acid/metabolism , Arabidopsis/growth & development , Droughts , Ectopic Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/physiology , Stress, Physiological/genetics
3.
Plant Physiol Biochem ; 109: 579-589, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27838599

ABSTRACT

Coconut farming is not only a vital agricultural industry for all tropical countries possessing humid coasts and lowlands, but is also a robust income provider for millions of smallholder farmers worldwide. However, due to its longevity, the security of production of this crop suffers significantly from episodes of natural disasters, including cyclone and tsunami, devastating pest and disease outbreaks, while also affected by price competition for the principal products, especially the oil. In order to reduce these pressures, high-value coconut varieties (makapuno and aromatics) have been introduced in some regions, on a limited scale, but with positive outcomes. Even though these two varieties produce fruit with delicious solid or flavoursome liquid endosperm, their distinct biochemical and cellular features unfortunately prevent their in situ germination. In fact, embryo rescue and culture have been developed historically to nurture the embryo under in vitro conditions, enabling effective propagation. In an attempt to provide a comprehensive review featuring these elite coconut varieties, this paper firstly introduces their food values and nutritional qualities, and then discusses the present knowledge of their biology and genetics. Further possibilities for coconut in general are also highlighted, through the use of advanced tissue culture techniques and efficient seedling management for sustainable production of these highly distinct and commercially attractive varieties of coconut.


Subject(s)
Cocos/growth & development , Plant Breeding/methods , Cocos/genetics , Cocos/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Endosperm/genetics , Endosperm/metabolism , Genes, Plant , Genetic Variation , Germination , Nutritive Value
4.
Planta ; 242(5): 1059-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26189000

ABSTRACT

MAIN CONCLUSION: The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop. Coconut (Cocos nucifera L.) is commonly known as the 'tree of life'. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.


Subject(s)
Biotechnology/methods , Cocos/embryology , Seeds/cytology , Cryopreservation , Seeds/growth & development
5.
Biomed Res Int ; 2014: 809736, 2014.
Article in English | MEDLINE | ID: mdl-24804248

ABSTRACT

Drought is one of the greatest constraints to soybean production in many countries, including Vietnam. Although a wide variety of the newly produced cultivars have been produced recently in Vietnam through classical breeding to cope with water shortage, little knowledge of their molecular and physiological responses to drought has been discovered. This study was conducted to quickly evaluate drought tolerance of thirteen local soybean cultivars for selection of the best drought-tolerant cultivars for further field test. Differences in drought tolerance of cultivars were assessed by root and shoot lengths, relative water content, and drought-tolerant index under both normal and drought conditions. Our data demonstrated that DT51 is the strongest drought-tolerant genotype among all the tested cultivars, while the highest drought-sensitive phenotype was observed with MTD720. Thus, DT51 could be subjected to further yield tests in the field prior to suggesting it for use in production. Due to their contrasting drought-tolerant phenotypes, DT51 and MTD720 provide excellent genetic resources for further studies underlying mechanisms regulating drought responses and gene discovery. Our results provide vital information to support the effort of molecular breeding and genetic engineering to improve drought tolerance of soybean.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Droughts , Glycine max/growth & development , Gene Expression Regulation, Plant , Genetic Engineering , Genotype , Plant Roots/growth & development , Glycine max/genetics , Vietnam , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...