Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 238: 113910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640797

ABSTRACT

This study represents an innovative approach to construct multi-functional nanoplatforms for cancer diagnosis and therapy by combining hyaluronic acid (HA) with iron-platinum nanoparticles (FePt NPs). These HA-coated FePt NPs, referred to as FePt@HA NPs, demonstrated remarkable biocompatibility, high absorption, and excellent light-to-heat conversion properties in the near-infrared (NIR) region, making them ideal candidates for photothermal therapy (PTT). In vitro studies revealed their effective cancer cell eradication under NIR laser irradiation, while in vivo experiments on mice showcased their superior heating capabilities. Moreover, FePt@HA NPs exhibited a distinct and strong photoacoustic (PA) signal, facilitating enhanced and precise intra-tumoral PA imaging. Our results highlight the potential of FePt@HA NPs as promising photothermal agents for future PTT applications. They offer high selectivity, precision, and minimal side effects in cancer treatment, along with their valuable PA imaging application for tumor localization and characterization.


Subject(s)
Hyaluronic Acid , Iron , Metal Nanoparticles , Photoacoustic Techniques , Photothermal Therapy , Platinum , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Photoacoustic Techniques/methods , Platinum/chemistry , Platinum/pharmacology , Animals , Mice , Iron/chemistry , Humans , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Mice, Inbred BALB C , Particle Size , Surface Properties , Cell Line, Tumor
2.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37452737

ABSTRACT

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Subject(s)
Metal Nanoparticles , Ytterbium/chemistry , Gadolinium/chemistry , Durapatite/chemistry , Contrast Media/chemistry , Metal Nanoparticles/chemistry , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy
3.
Sensors (Basel) ; 22(10)2022 May 15.
Article in English | MEDLINE | ID: mdl-35632172

ABSTRACT

In this study, we report an advanced fabrication technique to develop a miniature focused needle transducer. Two different types of high-frequency (100 MHz) transducers were fabricated using the lead magnesium niobate-lead titanate (PMN-0.3PT) and lithium niobate (LiNbO3) single crystals. In order to enhance the transducer's performance, a unique mass-spring matching layer technique was adopted, in which gold and parylene play the roles of the mass layer and spring layer, respectively. The PMN-0.3PT transducer had a 103 MHz center frequency with a -6 dB bandwidth of 52%, and a signal-to-noise ratio (SNR) of 42 dB. The center frequency, -6 dB bandwidth, and SNR of the LiNbO3 transducer were 105 MHz, 66%, and 44 dB, respectively. In order to compare and evaluate the transducers' performances, an ultrasonic biomicroscopy (UBM) imaging on the fish eye was performed. The results showed that the LiNbO3 transducer had a better contrast resolution compared to the PMN-0.3PT transducer. The fabricated transducer showed an excellent performance with high-resolution corneal epithelium imaging of the experimental fish eye. These interesting findings are useful for the future biomedical implementation of the fabricated transducers in the field of high-resolution ultrasound imaging and diagnosis purpose.


Subject(s)
Needles , Transducers , Animals , Equipment Design , Radiography , Ultrasonography/methods
4.
Sensors (Basel) ; 20(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260296

ABSTRACT

In this study, a photoacoustic microscopy (PAM) system based on a multifocal point (MFP) transducer was fabricated to produce a large depth-of-field tissue image. The customized MFP transducer has seven focal points, distributed along with the transducer's axis, fabricated by separate spherically-focused surfaces. These surfaces generate distinct focal zones that are overlapped to extend the depth-of-field. This design allows extending the focal zone of 10 mm for the 11 MHz MFP transducer, which is a great improvement over the 0.48 mm focal zone of the 11 MHz single focal point (SFP) transducer. The PAM image penetration depths of a chicken-hemoglobin phantom using SFP and MFP transducers were measured as 5 mm and 8 mm, respectively. The significant increase in the PAM image-based penetration depth of the chicken-hemoglobin phantom was a result of using the customized MFP transducer.


Subject(s)
Microscopy/methods , Photoacoustic Techniques , Transducers , Animals , Chickens , Equipment Design , Hemoglobins/analysis , Image Processing, Computer-Assisted , Meat/analysis , Microscopy/instrumentation , Ultrasonography
5.
Carbohydr Polym ; 211: 360-369, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30824100

ABSTRACT

Photothermal therapy (PTT) using chitosan/fucoidan multilayer coating of gold nanorods (CS/F-GNRs) has emerged as an alternative strategy for cancer therapy. In this study, biocompatible CS/F-GNRs were synthesized as a new generation of photothermal therapeutic agents for in vivo cancer treatments owing to their good biocompatibility, photostability, and strong absorption in the near-infrared (NIR) region. The CS/F-GNRs showed a good size distribution (51.87 ± 3.03 nm), and the temperature variation of the CS/F-GNRs increased by 54.4 °C after laser irradiation (1.0 W/cm2) for 5 min. The in vitro photothermal efficiency of CS/F-GNRs indicated that significantly more cancer cells were killed under laser irradiation at 1.0 W/cm2 for 5 min. On the 20th day of treatment, the MDA-MB-231 tumor cells in mice treated with CS/F-GNRs under laser irradiation had almost completely disappeared. Therefore, the biocompatible CS/F-GNRs have shown great promise as safe and highly efficient near-infrared photothermal agents for future cancer therapy.


Subject(s)
Chitosan , Gold , Nanotubes , Neoplasms/therapy , Phototherapy , Polysaccharides , Animals , Cell Line, Tumor , Chitosan/administration & dosage , Chitosan/chemistry , Female , Gold/administration & dosage , Gold/chemistry , Lasers , Mice, Inbred BALB C , Mice, Nude , Nanotubes/chemistry , Neoplasms/pathology , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Tumor Burden/drug effects
6.
Sensors (Basel) ; 19(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717095

ABSTRACT

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a -6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.

7.
Carbohydr Polym ; 205: 340-352, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30446113

ABSTRACT

This study reported a newly developed green synthesis method using chitosan and vitamin C to prepare porous flower-shaped palladium nanoparticles. We found that chitosan not only worked as a stabilizer but also as a size-control agent for the synthesis of these nanoparticles. The growth model of flower-shaped palladium nanoparticles was proposed to interpret mechanistic understanding. The obtained nanoparticles showed good biocompatibility and strong near-infrared absorption. The nanoparticles were successfully demonstrated to be highly efficient for both in vitro photothermal therapy and in vitro photoacoustic imaging.

8.
Polymers (Basel) ; 10(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-30966267

ABSTRACT

Photothermal therapy (PTT) using biocompatible nanomaterials have recently attracted much attention as a novel candidate technique for cancer therapy. In this work we report the performance of newly synthesized multidentate chitosan oligosaccharide modified gold nanorods (AuNRs-LA-COS) as novel agents for PTT of cancer cells due to their excellent biocompatibility, photothermal stability, and high absorption in the near-infrared (NIR) region. The AuNRs-LA-COS exhibit a strong NIR absorption peak at 838 nm with a mean length of 26 ± 3.1 nm and diameter of 6.8 ± 1.7 nm, respectively. The temperature of AuNRs-LA-COS rapidly reached 52.6 °C for 5 min of NIR laser irradiation at 2 W/cm². The AuNRs-LA-COS had very low cytotoxicity and exhibited high efficiency for the ablation of breast cancer cells in vitro. The tumor-bearing mice were completely ablated without tumor recurrence after photothermal treatment with AuNRs-LA-COS (25 µg/mL) under laser irradiation. In summary, this study demonstrated that AuNRs-LA-COS with laser irradiation as novel agents pave an alternative way for breast cancer therapy and hold great promise for clinical trials in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL
...