Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114334, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850532

ABSTRACT

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.


Subject(s)
Ion Channels , Humans , Ion Channels/metabolism , Ion Channels/chemistry , Animals , Protein Subunits/metabolism , HEK293 Cells , Mechanotransduction, Cellular , Mice , Mutation , Amino Acid Sequence , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Lipid Bilayers/metabolism
2.
J Clin Invest ; 130(7): 3671-3683, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484458

ABSTRACT

The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch. TTN3 was expressed in nerve terminals in the aortic arch and nodose ganglion (NG) neurons. Genetic ablation of Ttn3 induced ambient hypertension, tachycardia, AP fluctuations, and impaired baroreflex sensitivity. Chemogenetic silencing or activation of Ttn3+ neurons in the NG resulted in an increase in AP and heart rate, or vice versa. More important, overexpression of Ttn3 in the NG of Ttn3-/- mice reversed the cardiovascular changes observed in Ttn3-/- mice. We conclude that TTN3 is a molecular component contributing to the sensing of dynamic AP changes in baroreceptors.


Subject(s)
Aorta, Thoracic , Blood Pressure , Membrane Proteins/metabolism , Neurons/metabolism , Nodose Ganglion , Pressoreceptors , Animals , Aorta, Thoracic/innervation , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , HEK293 Cells , Humans , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Membrane Proteins/genetics , Mice , Mice, Knockout , Nodose Ganglion/metabolism , Nodose Ganglion/physiopathology , Pressoreceptors/metabolism , Pressoreceptors/physiopathology , Tachycardia/genetics , Tachycardia/metabolism , Tachycardia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...