Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 218(4): 1089-1091, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30886057

ABSTRACT

Lipid droplets (LDs) are hubs for lipid metabolism that form membrane contact sites with multiple organelles. In this issue, Hariri et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201808119) reveal the functions of Mdm1-mediated endoplasmic reticulum (ER)-LD tethering in yeast and Datta et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201808133) identify a role for the Mdm1 orthologue, Snx14, as an ER-LD tether that regulates lipid metabolism in human cells.


Subject(s)
Lipid Droplets , Saccharomyces cerevisiae Proteins , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Homeostasis , Humans , Intermediate Filament Proteins , Saccharomyces cerevisiae , Sorting Nexins
2.
Nat Med ; 24(3): 292-303, 2018 03.
Article in English | MEDLINE | ID: mdl-29400713

ABSTRACT

Adipocytes possess remarkable adaptive capacity to respond to nutrient excess, fasting or cold exposure, and they are thus an important cell type for the maintenance of proper metabolic health. Although the endoplasmic reticulum (ER) is a critical organelle for cellular homeostasis, the mechanisms that mediate adaptation of the ER to metabolic challenges in adipocytes are unclear. Here we show that brown adipose tissue (BAT) thermogenic function requires an adaptive increase in proteasomal activity to secure cellular protein quality control, and we identify the ER-localized transcription factor nuclear factor erythroid 2-like 1 (Nfe2l1, also known as Nrf1) as a critical driver of this process. We show that cold adaptation induces Nrf1 in BAT to increase proteasomal activity and that this is crucial for maintaining ER homeostasis and cellular integrity, specifically when the cells are in a state of high thermogenic activity. In mice, under thermogenic conditions, brown-adipocyte-specific deletion of Nfe2l1 (Nrf1) resulted in ER stress, tissue inflammation, markedly diminished mitochondrial function and whitening of the BAT. In mouse models of both genetic and dietary obesity, stimulation of proteasomal activity by exogenously expressing Nrf1 or by treatment with the proteasome activator PA28α in BAT resulted in improved insulin sensitivity. In conclusion, Nrf1 emerges as a novel guardian of brown adipocyte function, providing increased proteometabolic quality control for adapting to cold or to obesity.


Subject(s)
Adipose Tissue, Brown/metabolism , Endoplasmic Reticulum/genetics , NF-E2-Related Factor 1/genetics , Obesity/genetics , Proteasome Endopeptidase Complex/genetics , Acclimatization/genetics , Acclimatization/physiology , Animals , Cold Temperature , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Gene Deletion , Homeostasis , Humans , Inflammation/genetics , Inflammation/physiopathology , Insulin Resistance/genetics , Mitochondria/genetics , Mitochondria/metabolism , Models, Animal , Obesity/physiopathology , Proteasome Endopeptidase Complex/metabolism , Thermogenesis/genetics
3.
Cell ; 171(5): 1094-1109.e15, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149604

ABSTRACT

Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol.


Subject(s)
Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Liver/metabolism , Nuclear Respiratory Factor 1/metabolism , Animals , CD36 Antigens/metabolism , Fatty Liver/metabolism , Gene Expression Regulation , Homeostasis , Humans , Liver/cytology , Mice , Transcription, Genetic
4.
Autophagy ; 13(11): 2002-2003, 2017.
Article in English | MEDLINE | ID: mdl-28806138

ABSTRACT

Lipid droplets (LDs) are neutral lipid storage organelles that provide a rapidly accessible source of fatty acids (FAs) for energy during periods of nutrient deprivation. Surprisingly, lipids released by the macroautophagic/autophagic breakdown of membranous organelles are packaged and stored in new LDs during periods of prolonged starvation. Why cells would store FAs during an energy crisis was unknown. In our recent study, we demonstrated that FAs released during MTORC1-regulated autophagy are selectively channeled by DGAT1 (diacylglycerol O-acyltransferase 1) into triacylglycerol (TAG)-rich LDs. These DGAT1-dependent LDs sequester FAs and prevent the accumulation of acylcarnitines, which otherwise directly disrupt mitochondrial integrity. Our findings establish LD biogenesis as a general cellular response to periods of high autophagic flux that provide a lipid buffering system to mitigate lipotoxic cellular damage.


Subject(s)
Autophagy , Lipid Droplets , Fatty Acids , Mitochondria , Triglycerides
5.
Dev Cell ; 42(1): 9-21.e5, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28697336

ABSTRACT

Lipid droplets (LDs) provide an "on-demand" source of fatty acids (FAs) that can be mobilized in response to fluctuations in nutrient abundance. Surprisingly, the amount of LDs increases during prolonged periods of nutrient deprivation. Why cells store FAs in LDs during an energy crisis is unknown. Our data demonstrate that mTORC1-regulated autophagy is necessary and sufficient for starvation-induced LD biogenesis. The ER-resident diacylglycerol acyltransferase 1 (DGAT1) selectively channels autophagy-liberated FAs into new, clustered LDs that are in close proximity to mitochondria and are lipolytically degraded. However, LDs are not required for FA delivery to mitochondria but instead function to prevent acylcarnitine accumulation and lipotoxic dysregulation of mitochondria. Our data support a model in which LDs provide a lipid buffering system that sequesters FAs released during the autophagic degradation of membranous organelles, reducing lipotoxicity. These findings reveal an unrecognized aspect of the cellular adaptive response to starvation, mediated by LDs.


Subject(s)
Autophagy , Diacylglycerol O-Acyltransferase/metabolism , Lipid Droplets/metabolism , Mitochondria/metabolism , Amino Acids/deficiency , Animals , Autophagy/drug effects , Carnitine/analogs & derivatives , Carnitine/pharmacology , Humans , Isotope Labeling , Lipid Droplets/drug effects , Mechanistic Target of Rapamycin Complex 1 , Mice , Mitochondria/drug effects , Models, Biological , Multiprotein Complexes/metabolism , Palmitic Acid/metabolism , TOR Serine-Threonine Kinases/metabolism , Triglycerides
6.
Mol Biol Evol ; 28(1): 223-36, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20679092

ABSTRACT

The evolution of actin gene families is characterized by independent expansions and contractions across the eukaryotic tree of life. Here, we assess diversity of actin gene sequences within three lineages of the genus Arcella, a free-living testate (shelled) amoeba in the Arcellinida. We established four clonal lines of two morphospecies, Arcella hemisphaerica and A. vulgaris, and assessed their phylogenetic relationship within the "Amoebozoa" using small subunit ribosomal DNA (SSU-rDNA) genealogy. We determined that the two lines of A. hemisphaerica are identical in SSU-rDNA, while the two A. vulgaris are independent genetic lineages. Furthermore, we characterized multiple actin gene copies from all lineages. Analyses of the resulting sequences reveal numerous diverse actin genes, which differ mostly by synonymous substitutions. We estimate that the actin gene family contains 40-50 paralogous members in each lineage. None of the three independent lineages share the same paralog with another, and divergence between actins reaches 29% in contrast to just 2% in SSU-rDNA. Analyses of effective number of codons (ENC), compositional bias, recombination signatures, and genetic diversity in the context of a gene tree indicate that there are two groups of actins evolving with distinct patterns of molecular evolution. Within these groups, there have been multiple independent expansions of actin genes within each lineage. Together, these data suggest that the two groups are located in different regions of the Arcella genome. Furthermore, we compare the Arcella actin gene family with the relatively well-described gene family in the slime mold Dictyostelium discoideum and other members of the Amoebozoa clade. Overall patterns of molecular evolution are similar in Arcella and Dictyostelium. However, the separation of genes in two distinct groups coupled with recent expansion is characteristic of Arcella and might reflect an unusual pattern of gene family evolution in the lobose testate amoebae. We provide a model to account for both the existence of two distinct groups and the pattern of recent independent expansion leading to a large number of actins in each lineage.


Subject(s)
Actins/genetics , Amoeba/classification , Amoeba/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Ribosome Subunits, Small/genetics , Animals , Base Composition , Base Sequence , Codon , Genetic Variation , Humans , Likelihood Functions , Molecular Sequence Data , Multigene Family , Phylogeny , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...