Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091466

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Subject(s)
Ferric Compounds , Mycorrhizae , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Fourier Analysis , Minerals/chemistry , Soil/chemistry , Iron
2.
iScience ; 26(7): 107102, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485366

ABSTRACT

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

3.
J Environ Manage ; 344: 118488, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37393870

ABSTRACT

Mineral tailings dams pose high pollution risks to the environment and catastrophic failures. Dry stacking has been identified as a promising alternative to mitigate these risks and offers various benefits to the mining industry but lacks systematic research outcomes. To facilitate dry stacking, coal tailings slurries were dewatered using either filtration or centrifugation methods, resulting in a semi-solid form (cake) that can be safely disposed of. The handleability and disposability of these cakes are greatly influenced by the selection of chemical aids (such as polymer flocculants) and the mechanical dewatering technique employed. The effects of polyacrylamide (PAM) flocculants with a range of molecular weight, charge, and charge density are presented. Coal tailings samples with differences in clay mineralogy were dewatered using press filtration, solid bowl centrifugation, and natural air drying. Handleability and disposability of the tailings were assessed by their rheological properties, including yield stress, adhesive and cohesive stresses, and stickiness. Residue moisture, type of polymer flocculants, and clay mineralogy were found to be crucial factors affecting the handleability and disposability of the dewatered cakes. The tailing yield stress (shear strength) increased as the solid concentration increased. In the semi-solid regime (above 60 wt% solids), the tailings displayed stiff exponential growth. Similar trends were observed for stickiness and adhesive/cohesive energy of the tailings with a steel (truck) surface. Adding polymer flocculants increased the shear strength of the dewatered tailings by 10-15%, thus favouring disposability. However, the polymer selection for coal tailing handling and processing is a trade-off between its disposability and handleability, which requires a multi-criteria decision-making process. The current results also suggested that cationic PAM could be most suitable for dewatering by press filtration, while anionic PAM should be selected for dewatering by solid bowl centrifugation.


Subject(s)
Coal , Polymers , Clay , Shear Strength , Environmental Pollution
4.
J Colloid Interface Sci ; 647: 152-162, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37247479

ABSTRACT

HYPOTHESIS: Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS: Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS: Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.

5.
J Hazard Mater ; 422: 126925, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34449336

ABSTRACT

Bauxite residues generated from alumina refineries worldwide have accumulated to more than 4 billion tons, at an annual increment of ~ 0.15 billion tons. It is imperative and urgent for the alumina sector to develop field-operable disposal solutions for rapid and cost-effective stabilisation of alkaline bauxite residues (BR) in the storage facility to minimise/prevent potential environmental risks. Taking advantage of the availability of coal ash (CA) on site, we studied a feasible way to synthesise geopolymer from active (amorphous) aluminosilicate components of BR and CA via the alkaline hydrolysis under ambient conditions. The new geopolymeric binder effectively solidifies BR-CA mixtures into indurated monoliths whose unconstrained compressive strength (UCS) can reach as high as ~ 20 MPa after 8 weeks. The Full Factorial Experimental Design was used to study relative influences of BR:CA ratio, modulus of activating solution, and H2O/Na2O ratio on UCS. Micro-spectroscopic structural analyses using electron-dispersive X-ray spectroscopy and X-ray Photoelectron Spectroscopy suggested a co-occurrence of cement-like calcium aluminosilicate hydrate (C-A-S-H) and Na-rich aluminosilicate 3D-extended network (geopolymer) within the binder phase. The advantage of this ambient geopolymerisation, without resorting to elevated temperature curing, renders a feasible way of valorising BR and CA for environmental management of alkaline wastes at alumina refineries.

6.
J Hazard Mater ; 427: 127860, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34823947

ABSTRACT

Organic matter (OM) amendments and plant colonization can accelerate mineral weathering and soil formation in metal mine tailings for ecological rehabilitation. However, the weathering effects may dissolve uranium (U)-bearing minerals (e.g., ianthinite) and increase U dissolution in porewater and seepages. The present study aimed to characterize the U solubility and distribution among different fractions and investigate if biochar (BC) could decrease soluble U levels and facilitate U immobilization in the OM-amended and plant-colonized tailings. A native plant species, Red Flinders grass (Iseilema vaginiflorum) was cultivated in the tailings for four weeks, which were amended with sugarcane residue (SR) with or without BC addition. The results showed that OM amendment and plant colonization increased porewater U concentrations by almost 10 folds from ~ 0.2 mg L-1 to > 2.0 mg L-1. The BC addition decreased porewater U concentrations by 40%. Further micro-spectroscopic analysis revealed that U was immobilized through adsorption onto BC porous surfaces, via possibly complexing with oxygen-rich organic groups. Besides, the BC amendment facilitated U sequestration by secondary Fe minerals in the tailings. These findings provide important information about U biogeochemistry in Cu-tailings mediated by BC, OM and rhizosphere interactions for mitigating potential pollution risks of tailings rehabilitation.


Subject(s)
Soil Pollutants , Uranium , Charcoal , Ferrosoferric Oxide , Minerals , Soil , Soil Pollutants/analysis
7.
J Hazard Mater ; 425: 127943, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34894505

ABSTRACT

Developing alternative approaches to cap and rehabilitate the large areas of tailings landscapes is critical for sustainable development of mining industry. This study revealed the potential of an in-situ hardpan-based duplex soil system as an un-conventional approach to rehabilitate sulfidic Cu-Pb-Zn tailings. Under a shallow silicious soil cover, a massive and consistent hardpan horizon had been formed in-situ at the surface layer of tailings across the trial area, which physically separated root zones (i.e., silica soil cover) from the un-weathered tailings underneath, prevented capillary enrichment of acidity and soluble solutes into the root zones, and sustained native plant growth for more than a decade. Precipitation of Si-rich ferric complexes were attributed to the stabilisation/solidification of the sulfidic tailing. The hardpan layer possesses a highly compacted texture, a low-percolating pore network, and extreme resistance to water movement in the hardpan horizon. Further, the hardpans directly interfacing with plant roots in the soil cover were geochemically stabilised and attenuated, with very low levels of soluble metal(loid)s and a circumneutral pH condition. This case study would serve as a good incentive to develop bio-chemical engineering methodology building on current knowledge for achieving sustainable rehabilitation of sulfidic and metallic tailings in future.


Subject(s)
Metals, Heavy , Soil Pollutants , Lead , Soil , Soil Pollutants/analysis , Sulfides/analysis , Zinc/analysis
8.
Environ Sci Technol ; 55(19): 13045-13060, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34565140

ABSTRACT

Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.


Subject(s)
Microbiota , Soil Pollutants , Minerals , Rhizosphere , Soil , Soil Pollutants/analysis
9.
J Hazard Mater ; 384: 121444, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31629592

ABSTRACT

Hardpan caps formed after extensive weathering of the top layer of sulfidic tailings have been advocated to serve as physical barriers separating reactive tailings in depth and root zones above. However, in a hardpan-based root zone reconstructed with the soil cover, roots growing into contact with hardpan surfaces may induce the transformation of Fe-rich minerals and release potentially toxic elements for plant uptake. For evaluating this potential risk, two representative native species, Turpentine bush (Acacia chisholmii, AC) and Red Flinders grass (Iseilema vaginiflorum, RF), of which pre-cultured root mats were interfaced with thin discs of crushed hardpan minerals in the rhizosphere (RHIZO) test. After 35 days, the surface dissolution of hardpan minerals occurred and Fe-rich cement minerals were transformed from ferrihydrite-like minerals to goethite-like and Fe(III)-carboxylic complexes, as revealed by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption fine structure spectroscopy (XAFS) analysis. This transformation may result from the functions of root exudates. The transformation of hardpan cement minerals caused the co-dissolution of Cu and Zn initially encapsulated in the cements and their uptake by plants. Nevertheless, only was the minority of the plant Cu and Zn transported into shoots.


Subject(s)
Acacia/metabolism , Metals/metabolism , Minerals/chemistry , Plant Roots/metabolism , Plant Shoots/metabolism , Poaceae/metabolism , Rhizosphere , Soil Pollutants/metabolism , Industrial Waste , Metals/chemistry , Plant Roots/chemistry , Soil Pollutants/chemistry , Sulfides
10.
Environ Sci Technol ; 53(23): 13720-13731, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31697487

ABSTRACT

The formation of water-stable aggregates in finely textured and polymineral magnetite Fe ore tailings is one of the critical processes in eco-engineering tailings into soil-like substrates as a new way to rehabilitate the tailings. Organic matter (OM) amendment and plant colonization are considered to be effective in enhancing water-stable aggregation, but the underlying mechanisms have not yet been elucidated. The present study aimed to characterize detailed changes in physicochemistry, Fe-bearing mineralogy, and organo-mineral interactions in magnetite Fe ore tailings subject to the combined treatments of OM amendment and plant colonization, by employing various microspectroscopic methods, including synchrotron-based X-ray absorption fine structure spectroscopy and nanoscale secondary ion mass spectroscopy. The results indicated that OM amendment and plant colonization neutralized the tailings' alkaline pH and facilitated water-stable aggregate formation. The resultant aggregates were consequences of ligand-promoted bioweathering of primary Fe-bearing minerals (mainly biotite-like minerals) and the formation of secondary Fe-rich mineral gels. Especially, the sequestration of OM (rich in carboxyl, aromatic, and/or carbonyl C) by Fe-rich minerals via ligand-exchange and/or hydrophobic interactions contributed to the aggregation. These findings have uncovered the processes and mechanisms of water-stable aggregate formation driven by OM amendment and plant colonization in alkaline Fe ore tailings, thus providing important basis for eco-engineered pedogenesis in the tailings.


Subject(s)
Carbon Sequestration , Ferrosoferric Oxide , Minerals , Soil , Water
11.
Sci Total Environ ; 695: 133694, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31421331

ABSTRACT

A novel photocatalytic carbon nanotube sponge with three-dimensional Bombax-structure was fabricated by a facile chemical vapor deposition followed by in situ ion-exchange approach. The as-prepared sponge achieved both high-efficiency adsorption and photocatalysis towards antibiotics, which can remove up to 90% of tetracycline within an hour. The morphology and mechanism of the photocatalytic CNT sponge were explored by multiple measures. Results show the functional groups and high specific surface area of CNT sponge play vital roles in preparing this Bombax-structured Ag3PO4/CNT sponge, the band gap of which can be tuned by varying the ration between Ag3PO4 and CNT. The photodegradation experiments of tetracycline with the assistance of ultrasound irradiation were performed, Ag3PO4/CNT sponge exhibits preferable photocatalytic activity, which can be attributed to both the enhancement of specific surface area of Ag3PO4 and the cavitation effect on CNT surface. The efficiency contributed by ultrasound could account for more than half of the degradation efficiency when the ultrasound power was 100 W. The improvement in transfer efficiency and the delay in charge recombination of Ag3PO4/CNT sponge were further verified by Electrochemical impedance spectra (EIS) and Photoluminescence tests (PL). Reactive free-radical species were detected by the Electron Spin Resonance (ESR). The intermediates and possible pathway were analyzed by gas chromatography-mass spectrometer (GC-MS) technique.

12.
Environ Pollut ; 252(Pt B): 1106-1116, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252108

ABSTRACT

Hardpans are massively indurated layers formed at the top layer of sulfidic tailings dams, which develop cementation structures and result in heavy metal immobilization. However, the micro-structural and complex forms of the cementing materials are not fully understood, as well as the mechanisms by which Zn and Pb are stabilized in the hardpans. The present study deployed synchrotron-based X-ray fluorescence microscopy (XFM) to have characterized the cementing structures, examined the distribution of Fe, Zn and Pb, and obtained laterally-resolved speciation of Zn within the hardpans using fluorescence X-ray absorption near-edge structure (XANES) imaging. The XFM analyses revealed that the Fe-rich cement layers consisted of Fe (oxyhydr)oxides coupled with amorphous Si materials, immobilizing Zn and Pb. Through laterally-resolved XANES imaging analyses, Zn-ferrihydrite-like precipitates were predicted to account for >76% of the total Zn within the Fe-rich cement layers. In contrast, outside of the cement layers, 9-63% of the Zn was estimated as labile ZnSO4.7H2O, with the remainder in the form of Zn-sulfide. These findings demonstrated that the Fe-rich cement layers were critical in immobilizing Zn and Pb within hardpans via mineral passivation and encapsulation, as the basis for long-term geochemical stability in the hardpan layer of sulfidic mine tailings.


Subject(s)
Copper/analysis , Ferric Compounds/analysis , Industrial Waste/analysis , Lead/analysis , Minerals/analysis , Sulfides/analysis , Zinc/analysis , Mining , Queensland
13.
Environ Pollut ; 242(Pt B): 1500-1509, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30144723

ABSTRACT

A massive and dense textured layer (ca. 35-50 cm thick) of hardpan was uncovered at the top layer, which capped the unweathered sulfidic Cu-Pb-Zn tailings in depth and physically supported gravelly soil root zones sustaining native vegetation for more than a decade. For the purpose of understanding functional roles of the hardpan layer in the cover profile, the present study has characterized the microstructures of the hardpan profile at different depth compared with the tailings underneath the hardpans. A suit of microspectroscopic technologies was deployed to examine the hardpan samples, including field emission-scanning electron microscopy coupled with energy dispersive spectroscopy (FE-SEM-EDS), X-ray diffraction (XRD) and synchrotron-based X-ray absorption fine structure spectroscopy (XAFS). The XRD and Fe K-edge XAFS analysis revealed that pyrite in the tailings had been largely oxidised, while goethite and ferrihydrite had extensively accumulated in the hardpan. The percentage of Fe-phyllosilicates (e.g., biotite and illite) decreased within the hardpan profile compared to the unweathered tailings beneath the hardpan. The FE-SEM-EDS analysis showed that the fine-grained Ca-sulfate (possibly gypsum) evaporites appeared as platelet-shaped that deposited around pyrite, dolomite, and crystalline gypsum particles, while Fe-Si gels exhibited a needle-like texture that aggregated minerals together and produced contiguous coating on pyrite surfaces. These microstructural findings suggest that the weathering of pyrite and Fe-phyllosilicates coupled with dolomite dissolution may have contributed to the formation of Ca-sulfate/gypsum evaporites and Fe-Si gels. These findings have among the first to uncover the microstructure of hardpan formed at the top layer of sulfidic Cu-Pb-Zn tailings, which physically capped the unweathered tailings in depth and supported root zones and native vegetation under semi-arid climatic conditions.


Subject(s)
Copper , Industrial Waste/analysis , Lead , Minerals/analysis , Mining , Zinc , Minerals/chemistry , Spectrometry, X-Ray Emission , X-Ray Absorption Spectroscopy , X-Ray Diffraction
14.
Langmuir ; 34(23): 6955-6962, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29757650

ABSTRACT

Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number Eo whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of Eo, the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( Eo = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

15.
J Colloid Interface Sci ; 517: 230-238, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29427888

ABSTRACT

Carbonation using CO2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO2 sequestration. Here we report the novel findings that CO32- together with Ca2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation.

16.
Acta Biomater ; 69: 1-30, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29357319

ABSTRACT

Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE: Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.


Subject(s)
Deltaproteobacteria/chemistry , Fimbriae Proteins/chemistry , Nanowires/chemistry , Peptides/chemistry , Shewanella/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Deltaproteobacteria/metabolism , Electron Transport , Fimbriae Proteins/metabolism , Peptides/metabolism , Shewanella/metabolism
17.
ACS Macro Lett ; 7(2): 159-165, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-35610912

ABSTRACT

RAFT emulsion polymerization techniques including polymerization-induced self-assembly (PISA) and temperature-induced morphological transformation (TIMT) are widely used to produce noncrosslinked nano-objects with various morphologies. However, the worm, vesicle and lamellar morphologies produced by these techniques typically cannot tolerate the presence of added surfactants, thus limiting their potential applications. Herein we report the surfactant tolerance of noncrosslinked worms, vesicles, and lamellae prepared by RAFT emulsion polymerizations using poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA)) as a macromolecular chain transfer agent (macro-CTA). Significantly, these P(DEGMA-co-HPMA) nanoparticles are highly stable in concentrated solutions of surfactants (e.g., sodium dodecyl sulfate (SDS)). We also demonstrate that the surfactant tolerance is related to the limited binding of SDS to the main-chain of the P(DEGMA-co-HPMA) macro-CTA constituting the particle shell. This work provides new insight into the interactions between surfactants and thermoresponsive copolymers and expands the scope of RAFT emulsion polymerization techniques for the preparation of noncrosslinked and surfactant-tolerant nanomaterials.

18.
ACS Macro Lett ; 7(8): 909-915, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-35650964

ABSTRACT

Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required.

19.
Environ Geochem Health ; 39(2): 403-415, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27619818

ABSTRACT

A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC-BET-alkalinity, and alkalinity-ash content. These comprehensive characterization and analysis results on biochars' properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.


Subject(s)
Charcoal/chemistry , Eucalyptus , Pinus , Wood/chemistry , Biomass , Electric Conductivity , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Species Specificity , Surface Properties , Temperature
20.
Chemosphere ; 142: 64-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26206747

ABSTRACT

Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Salinity , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Wood/chemistry , Zinc/chemistry , Adsorption , Copper/isolation & purification , Hydrogen-Ion Concentration , Mining , Water/chemistry , Water Pollutants, Chemical/isolation & purification , Zinc/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...