Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954124

ABSTRACT

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Subject(s)
Anti-Bacterial Agents , Oxidation-Reduction , Tetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Catalysis , Wastewater/chemistry , Bismuth/chemistry , Graphite/chemistry , Nitrogen Compounds/chemistry , Tungsten Compounds/chemistry , Photolysis , Water Purification/methods , Sewage/chemistry
2.
J Colloid Interface Sci ; 540: 1-8, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30616093

ABSTRACT

In this study, we firstly aimed to use Nb as dopant to dope into the TiO2 lattice in order to narrow band gap energy or enhance photocatalytic activity of the Nb-TiO2. Then, the prepared Nb-TiO2 was combined with g-C3N4 to establish Nb-TiO2/g-C3N4 direct Z-scheme system for superior reduction of CO2 into valuable fuels even under visible light. The obtained results indicated that the band gap energy of the Nb-TiO2 (2.91 eV) was lower than that of the TiO2 (3.2 eV). In the successfully established Nb-TiO2/g-C3N4 direct Z-scheme system, the photo-excited e- in the CB of the Nb-TiO2 combined with the photo-excited h+ in the VB of the g-C3N4 preserving the existence of e- in the CB of the g-C3N4 and h+ in the VB of Nb-TiO2, and thereby, the system produced numerous amount of available e-/h+ pairs for the reduction of CO2 into various valuable fuels. In addition, the produced e- of the Nb-TiO2/g-C3N4 existing in the CB of the g-C3N4, which the potential energy is approximately -1.2 V, would be strong enough for the reduction of CO2 to generate not only CH4 and CO but also HCOOH. Among established Nb-TiO2/g-C3N4 materials, the 50Nb-TiO2/50 g-C3N4 material was the best material for the CO2 reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...