Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1382655, 2024.
Article in English | MEDLINE | ID: mdl-38803494

ABSTRACT

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Subject(s)
COVID-19 , Disease Models, Animal , Immunity, Innate , Lung , Microplastics , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Immunity, Innate/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Lung/immunology , Lung/virology , Lung/pathology , Cytokines/metabolism , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Female , Cytokine Release Syndrome/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Betacoronavirus/immunology , Pandemics
2.
Front Microbiol ; 14: 1320856, 2023.
Article in English | MEDLINE | ID: mdl-38075874

ABSTRACT

The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic potential, resulting in fulminant brain infection and mortality, similar to that seen for original ancestral isolates. BA.5 also infected human cortical brain organoids to a greater extent than the BA.1 and original ancestral isolates. In the brains of mice, neurons were the main target of infection, and in human organoids neuronal progenitor cells and immature neurons were infected. The results herein suggest that evolving omicron variants may have increasing neurotropic potential.

3.
J Virol ; 97(3): e0160122, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36883812

ABSTRACT

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes often debilitating rheumatic disease in tropical Central and South America. There are currently no licensed vaccines or antiviral drugs available for MAYV disease. Here, we generated Mayaro virus-like particles (VLPs) using the scalable baculovirus-insect cell expression system. High-level secretion of MAYV VLPs in the culture fluid of Sf9 insect cells was achieved, and particles with a diameter of 64 to 70 nm were obtained after purification. We characterize a C57BL/6J adult wild-type mouse model of MAYV infection and disease and used this model to compare the immunogenicity of VLPs from insect cells with that of VLPs produced in mammalian cells. Mice received two intramuscular immunizations with 1 µg of nonadjuvanted MAYV VLPs. Potent neutralizing antibody responses were generated against the vaccine strain, BeH407, with comparable activity seen against a contemporary 2018 isolate from Brazil (BR-18), whereas neutralizing activity against chikungunya virus was marginal. Sequencing of BR-18 illustrated that this virus segregates with genotype D isolates, whereas MAYV BeH407 belongs to genotype L. The mammalian cell-derived VLPs induced higher mean neutralizing antibody titers than those produced in insect cells. Both VLP vaccines completely protected adult wild-type mice against viremia, myositis, tendonitis, and joint inflammation after MAYV challenge. IMPORTANCE Mayaro virus (MAYV) is associated with acute rheumatic disease that can be debilitating and can evolve into months of chronic arthralgia. MAYV is believed to have the potential to emerge as a tropical public health threat, especially if it develops the ability to be efficiently transmitted by urban mosquito vectors, such as Aedes aegypti and/or Aedes albopictus. Here, we describe a scalable virus-like particle vaccine against MAYV that induced neutralizing antibodies against a historical and a contemporary isolate of MAYV and protected mice against infection and disease, providing a potential new intervention for MAYV epidemic preparedness.


Subject(s)
Aedes , Alphavirus , Chikungunya virus , Rheumatic Diseases , Vaccines, Virus-Like Particle , Animals , Mice , Vaccines, Virus-Like Particle/genetics , Mice, Inbred C57BL , Alphavirus/genetics , Brazil , Antibodies, Neutralizing , Mammals
4.
Sci Total Environ ; 859(Pt 1): 160163, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36395835

ABSTRACT

Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.


Subject(s)
COVID-19 , Pneumonia , Mice , Animals , COVID-19/pathology , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Mice, Transgenic , Disease Models, Animal , Lung/pathology , Brain/metabolism
5.
PLoS Pathog ; 17(7): e1009723, 2021 07.
Article in English | MEDLINE | ID: mdl-34214142

ABSTRACT

SARS-CoV-2 uses the human ACE2 (hACE2) receptor for cell attachment and entry, with mouse ACE2 (mACE2) unable to support infection. Herein we describe an ACE2-lentivirus system and illustrate its utility for in vitro and in vivo SARS-CoV-2 infection models. Transduction of non-permissive cell lines with hACE2 imparted replication competence, and transduction with mACE2 containing N30D, N31K, F83Y and H353K substitutions, to match hACE2, rescued SARS-CoV-2 replication. Intrapulmonary hACE2-lentivirus transduction of C57BL/6J mice permitted significant virus replication in lung epithelium. RNA-Seq and histological analyses illustrated that this model involved an acute inflammatory disease followed by resolution and tissue repair, with a transcriptomic profile similar to that seen in COVID-19 patients. hACE2-lentivirus transduction of IFNAR-/- and IL-28RA-/- mouse lungs was used to illustrate that loss of type I or III interferon responses have no significant effect on virus replication. However, their importance in driving inflammatory responses was illustrated by RNA-Seq analyses. We also demonstrate the utility of the hACE2-lentivirus transduction system for vaccine evaluation in C57BL/6J mice. The ACE2-lentivirus system thus has broad application in SARS-CoV-2 research, providing a tool for both mutagenesis studies and mouse model development.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Gene Expression Profiling , Lentivirus , SARS-CoV-2 , Transduction, Genetic , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
6.
Pathogens ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081269

ABSTRACT

Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.

7.
Vaccines (Basel) ; 8(2)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380760

ABSTRACT

Chikungunya virus (CHIKV), Ross River virus (RRV), o'nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.

SELECTION OF CITATIONS
SEARCH DETAIL
...