Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Cardiol Young ; : 1-2, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444187

ABSTRACT

Ductal stenting has transformed the care of neonates with ductal-dependent critical CHD, especially in low-income countries. In small infants, a 3.5- or 4-mm stent may lead to too much pulmonary blood flow resulting in pulmonary oedema. We herein presented a novel technique to restrict ductal stent flow in a premature neonate with pulmonary atresia and intact ventricular septum following radiofrequency perforation of the pulmonary valve.

3.
Cell Mol Life Sci ; 79(1): 20, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971415

ABSTRACT

The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.


Subject(s)
Brain Diseases/metabolism , Brain/metabolism , Membrane Transport Proteins/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Humans , Lactic Acid/metabolism
4.
Theranostics ; 11(6): 2932-2952, 2021.
Article in English | MEDLINE | ID: mdl-33456581

ABSTRACT

Rationale: Cancer stem cells (CSCs) are known to cause tumor recurrence and drug resistance. The heat shock protein (HSP) system plays a major role in preserving expression and function of numerous oncoproteins, including those involved in the CSC activities. We explored novel anticancer drugs, especially those targeting HSP components required for the functional role of CSCs. Methods: Investigation of the role of the HSP system in CSCs and screening of a natural product chemical library were performed by utilizing cancer cell lines, primary cultures of patient-derived xenografts (PDXs), and their putative CSC subpopulations (i.e., those grown under sphere-forming conditions, stably transfected with reporter vectors carrying NANOG or POUSF1 promoters, or carrying high ALDH activity) in vitro and PDX and KrasG12D/+-driven tumor models in vivo. Regulation of the HSP system was investigated by immunoprecipitation, drug affinity responsive target stability assay, binding experiments using ATP-agarose beads and biotinylated drug, and docking analysis. Results: The HSP system was activated in CSCs via transcriptional upregulation of the HSP system components, especially HSP70. Evodiamine (Evo) was identified to induce apoptosis in both CSC and bulk non-CSC populations in human lung, colon, and breast cancer cells and their sublines with chemoresistance. Evo administration decreased the multiplicity, volume, and load of lung tumors in KrasG12D/+ transgenic mice and the growth of cancer cell line- and PDX-derived tumors without detectable toxicity. Mechanistically, Evo disrupted the HSP system by binding the N-terminal ATP-binding pocket of HSP70 and causing its ubiquitin-mediated degradation. Conclusions: Our findings illustrate HSP70 as a potential target for eliminating CSCs and Evo as an effective HSP70-targeting anticancer drug eradicating both CSCs and non-CSCs with a minimal toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Quinazolines/pharmacology , A549 Cells , Animals , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neoplasms/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Up-Regulation/drug effects
5.
Biomolecules ; 10(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878259

ABSTRACT

Glutathione (GSH) degradation plays an essential role in GSH homeostasis, which regulates cell survival, especially in cancer cells. Among human GSH degradation enzymes, the ChaC2 enzyme acts on GSH to form 5-l-oxoproline and Cys-Gly specifically in the cytosol. Here, we report the crystal structures of ChaC2 in two different conformations and compare the structural features with other known γ-glutamylcyclotransferase enzymes. The unique flexible loop of ChaC2 seems to function as a gate to achieve specificity for GSH binding and regulate the constant GSH degradation rate. Structural and biochemical analyses of ChaC2 revealed that Glu74 and Glu83 play crucial roles in directing the conformation of the enzyme and in modulating the enzyme activity. Based on a docking study of GSH to ChaC2 and binding assays, we propose a substrate-binding mode and catalytic mechanism. We also found that overexpression of ChaC2, but not mutants that inhibit activity of ChaC2, significantly promoted breast cancer cell proliferation, suggesting that the GSH degradation by ChaC2 affects the growth of breast cancer cells. Our structural and functional analyses of ChaC2 will contribute to the development of inhibitors for the ChaC family, which could effectively regulate the progression of GSH degradation-related cancers.


Subject(s)
Glutathione/metabolism , gamma-Glutamylcyclotransferase/chemistry , gamma-Glutamylcyclotransferase/metabolism , Catalytic Domain , Cell Proliferation , HEK293 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Mutation , Protein Multimerization , Protein Structure, Quaternary , Sequence Alignment , gamma-Glutamylcyclotransferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL